Umeå Universitet Department of Physics Monte Carlo methods Peter Olsson

Examination, Monte Carlo methods, 7.5hp, 2010–06–01, at 9.00–15.00, Östra paviljongen.

Allowed aids: Calculator, Beta, Physics Handbook.

Hand in each problem on a separate page. The calculations and the reasoning should be easy to follow. *Good luck!*

1 Basic statistics

a) Consider independent, random variables x_i with average μ and variance σ^2 . The average of N such variables is

$$m = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

What is σ_m^2 , the variance of m?

- b) Derive this result. (2p)
- c) Specialize to the case where the x_i are from a uniform distribution (2p) between -1 and 1 and N = 100. What is the distribution of m?

2 Theory behind Markov chains

A Markov chain may be described as a transition matrix p_{ij} . Describe the three conditions that have to be fulfilled by this matrix and motivate why they are necessary. *Hint: The first has to be true for all p_{ij},* the second is for p_{ii} , and the last concerns $\sum_{j} p_{ij}$.

3 1D Ising model

Show that the 1D Ising model is disordered for all T > 0. (4p)

4 Scaling analysis

One way to analyze experimental data (or simulations at big lattices) is to plot $m/|t|^a$ versus $h/|t|^c$. Start from $m \sim \partial f/\partial h$ and

$$f(t,h) = b^{-d} f(tb^{y_t}, hb^{y_h}),$$

and express a and c in terms of d, y_t , and y_h . (4p)

(3p)

(1p)

5 Expectation values

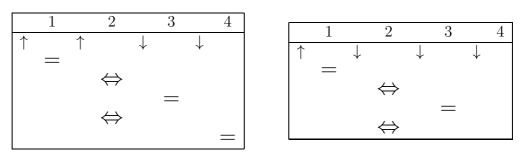
For small lattices it is possible to use three different methods to calculate the properties of the Ising model:

- (1) Through a complete enumeration of all the possible states.
- (2) By generating a set of randomly produced configurations.
- (3) Through a Monte Carlo simulation.
- a) Describe the formulas that should be used to calculate expectation (3p) values in methods (1), (2), and (3). Assume that we have access to A_{ν} and the energy E_{ν} for each generated configuration and want to calculate $\langle A \rangle$.
- b) Why could it sometimes be motivated to study a system through (1p) a complete enumeration?
- c) Consider a complete enumeration of a $L \times L$ Ising model. What is (2p) the maximum size L that would be possible to study in 24 hours on a single 3GHz-processor. Base your answer on some reasonable assumptions.

6 Quantum Monte Carlo

The figures below show representations of two terms in the space of spin states and operators for the spin-1/2 Ising model with four spins. The symbol " \Leftrightarrow " symbolizes an off-diagonal operator whereas "=" is a diagonal operator.

- a) Which of these states represents a non-vanishing term? Why? (2p)
- b) What is the order of the expansion (denoted by n) of the nonvanishing term? (1p)



7 Master-equation solution of a two state system

A simple system has two states 0 and 1 with energies E_0 and E_1 respectively. Transitions between the two states take place at rates $P(0 \rightarrow 1) = R_0 \exp[-\beta(E_1 - E_0)]$ (β is the inverse temperature) and $P(1 \rightarrow 0) = R_0$. Let $w_0(t)$ and $w_1(t)$ be the probabilities of the system being in state 0 or 1 as a function of time t with the initial conditions $w_0(0) = 0$ and $w_1(0) = 1$.

- a) Express dw_0/dt in terms of β , R_0 , E_0 and E_1 . (3p)
- b) Solve this equation and show that the system obeys the Boltzmann distribution in the limit $t \to \infty$. (3p)

8 Conserved-order-parameter Ising model

The conserved-order-parameter Ising model is defined just like the regular Ising model but with the extra condition that the magnetization is fixed M (i.e. a control parameter of the model). The traditional way of simulating the conserved-order-parameter Ising model is by the Kawasaki algorithm defined as follows on a lattice with N spins:

- 1. Start with any configuration of (N+M)/2 up-spins and (N-M)/2 down-spins.
- 2. Chose two sites i and j at random.
- 3. If ν is the current spin-configuration, let μ be the spin configuration where s_i (the value of the spin at site *i*) has the value that s_j does in ν and s_j of has the value that s_i has in ν .
- 4. Let $\Delta E = H(\mu) H(\nu)$, where H is the Ising Hamiltonian.
- 5. If $\Delta E < 0$, or with a probability $\exp(-\beta \Delta E)$ (β is the inverse temperature), swap the spin-values of sites *i* and *j*.
- 6. Go to step 2.

Obviously the magnetization is constantly M. Our questions are:

a)	Define <i>ergodicity</i> .	(1p)
b)	Why does the Kawasaki algorithm sample the configurations of	
	the conserved-order-parameter Ising model ergodically?	(1p)

- c) Define *detailed balance*. (1p)
- d) Why does the Kawasaki algorithm fulfill detailed balance? (2p)

e) Obviously $s_i = s_j$ (in step 2) implies that $\nu = \mu$. The simulation might be faster if one chose *i* and *j* randomly only among all *neighboring* pairs of sites with *different* spin values. This algorithm would however not sample the Boltzmann distribution. Why? Illustrate with a concrete example (with explicit configurations) in a system of just a few spins. (4p)