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Examination, Monte Carlo methods, 7.5hp, 2010–06–01, at 9.00–

15.00, Östra paviljongen.

Allowed aids: Calculator, Beta, Physics Handbook.

Hand in each problem on a separate page.
The calculations and the reasoning should be easy to follow.
Good luck!

1 Basic statistics

a) Consider independent, random variables xi with average µ and
variance σ2. The average of N such variables is

m =
1

N

N∑

i=1

xi.

What is σ2

m, the variance of m? (1p)

b) Derive this result. (2p)

c) Specialize to the case where the xi are from a uniform distribution (2p)
between −1 and 1 and N = 100. What is the distribution of m?

2 Theory behind Markov chains (3p)
A Markov chain may be described as a transition matrix pij. Describe
the three conditions that have to be fulfilled by this matrix and moti-
vate why they are necessary. Hint: The first has to be true for all pij,
the second is for pii, and the last concerns

∑
j pij.

3 1D Ising model

Show that the 1D Ising model is disordered for all T > 0. (4p)

4 Scaling analysis

One way to analyze experimental data (or simulations at big lattices)
is to plot m/|t|a versus h/|t|c. Start from m ∼ ∂f/∂h and

f(t, h) = b−df(tbyt , hbyh),

and express a and c in terms of d, yt, and yh. (4p)
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5 Expectation values

For small lattices it is possible to use three different methods to calcu-
late the properties of the Ising model:

(1) Through a complete enumeration of all the possible states.

(2) By generating a set of randomly produced configurations.

(3) Through a Monte Carlo simulation.

a) Describe the formulas that should be used to calculate expectation (3p)
values in methods (1), (2), and (3). Assume that we have access to
Aν and the energy Eν for each generated configuration and want
to calculate 〈A〉.

b) Why could it sometimes be motivated to study a system through (1p)
a complete enumeration?

c) Consider a complete enumeration of a L×L Ising model. What is (2p)
the maximum size L that would be possible to study in 24 hours
on a single 3GHz-processor. Base your answer on some reasonable
assumptions.

6 Quantum Monte Carlo

The figures below show representations of two terms in the space of
spin states and operators for the spin-1/2 Ising model with four spins.
The symbol “⇔” symbolizes an off-diagonal operator whereas “=” is a
diagonal operator.

a) Which of these states represents a non-vanishing term? Why? (2p)

b) What is the order of the expansion (denoted by n) of the non-
vanishing term? (1p)

1 2 3 4
↑ ↑ ↓ ↓

=

⇔
=

⇔
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⇔
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7 Master-equation solution of a two state system

A simple system has two states 0 and 1 with energies E0 and E1

respectively. Transitions between the two states take place at rates
P (0 → 1) = R0 exp[−β(E1 − E0)] (β is the inverse temperature) and
P (1 → 0) = R0. Let w0(t) and w1(t) be the probabilities of the system
being in state 0 or 1 as a function of time t with the initial conditions
w0(0) = 0 and w1(0) = 1.

a) Express dw0/dt in terms of β, R0, E0 and E1. (3p)

b) Solve this equation and show that the system obeys the Boltzmann
distribution in the limit t → ∞. (3p)

8 Conserved-order-parameter Ising model

The conserved-order-parameter Ising model is defined just like the reg-
ular Ising model but with the extra condition that the magnetization
is fixed M (i.e. a control parameter of the model). The traditional
way of simulating the conserved-order-parameter Ising model is by the
Kawasaki algorithm defined as follows on a lattice with N spins:

1. Start with any configuration of (N+M)/2 up-spins and (N−M)/2
down-spins.

2. Chose two sites i and j at random.

3. If ν is the current spin-configuration, let µ be the spin configura-
tion where si (the value of the spin at site i) has the value that sj
does in ν and sj of has the value that si has in ν.

4. Let ∆E = H(µ)−H(ν), where H is the Ising Hamiltonian.

5. If ∆E < 0, or with a probability exp(−β ∆E) (β is the inverse
temperature), swap the spin-values of sites i and j.

6. Go to step 2.

Obviously the magnetization is constantly M . Our questions are:

a) Define ergodicity. (1p)

b) Why does the Kawasaki algorithm sample the configurations of
the conserved-order-parameter Ising model ergodically? (1p)

c) Define detailed balance. (1p)

d) Why does the Kawasaki algorithm fulfill detailed balance? (2p)
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e) Obviously si = sj (in step 2) implies that ν = µ. The simula-
tion might be faster if one chose i and j randomly only among
all neighboring pairs of sites with different spin values. This al-
gorithm would however not sample the Boltzmann distribution.
Why? Illustrate with a concrete example (with explicit configu-
rations) in a system of just a few spins. (4p)


