4. Scaling analysis

One way to analyze experimental data (or simulations at big lattices) is to plot $m /|t|^{a}$ versus $h /|t|^{c}$. Start from $m \sim \partial f / \partial h$ and

$$
\begin{equation*}
f(t, h)=b^{-d} f\left(t b^{y_{t}}, h b^{y_{h}}\right), \tag{1}
\end{equation*}
$$

and express a and c in terms of d, y_{t}, and y_{h}.

Solution: We first need the scaling expression for the magnetization:

$$
\begin{equation*}
m(t, h) \sim \frac{\partial f}{\partial h} \sim b^{y_{h}-d} f_{h}\left(t b^{y_{t}}, h b^{y_{h}}\right) . \tag{2}
\end{equation*}
$$

Put the first argument equal to unity, i.e. demand that $t b^{y t}= \pm 1$. This gives $b=|t|^{-1 / y_{t}}$ which we put back into Eq. (2):

$$
\begin{equation*}
m(t, h)=|t|^{\left(d-y_{h}\right) / y_{t}} f_{h}\left(\pm 1, h|t|^{-y_{h} / y_{h}}\right) \tag{3}
\end{equation*}
$$

which can be rewritten

$$
\begin{equation*}
m(t, h) /|t|^{\left(d-y_{h}\right) / y_{t}}=f_{ \pm}\left(h /|t|^{y_{h} / y_{h}}\right) . \tag{4}
\end{equation*}
$$

