
1 Jamming as a critical phenomenon

We here consider slowing down of the dynamics when the system becomes
too crowded—compare traffic jam. What we have in mind here is collections
of particles that are sufficiently big that the thermal fluctuations don’t play
any role. We therefore do simulations with temperature T = 0. We also
mostly do the simulations in 2D. (This case is exceptional in the sense that
the critical exponents appear to be the same in 2D and 3D.)

One way to approach the jamming transition is to look at static packings:
Throw out the particles at random positions in the simulation cell. Let the
particles move according to the repulsive contact forces (see below) and check
if one reaches a state without any overlaps. Otherwise the configuration is
said to be “jammed”.

The second approach—the one that we will consider here—is to apply a
dynamics by shearing the system. We are thus sampling configurations from
steady state. There is no thermal equilibrium.

1.1 Simplest model for shear-driven jamming

We consider elastic particles with contact-only interaction; the particles in-
teract when the distance rij = ri − rj is smaller than the sum of their radii,
dij =

1
2
(di + dj). The force from particle j on particle i is

f elij =
ke
dij

(

1−
rij
dij

)

r̂ij, (1)

and the total force becomes

f eli =
∑

j

f elij , (2)

where the sum is over all particles j in contact with particle i.
We further take the particles to sit on some kind of shearing substrate

with a y-dependent velocity, vS(r) = γ̇yx̂. We assume overdamped dynamics
(no acceleration, velocity relative to substrate proportional to the force) and
get

vi = vS(ri) +
1

kd
f eli . (3)
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1.2 Liquid-solid transition

Data from shearing with different shear rates, γ̇. We determine the shear
stress

σ = −
1

L2

∑

j>i

fx
ijyij, (4)

which is the resistance against shearing. To locate the transition between
liquid and solid one should consider the case of slow shearing,

lim
γ̇→0

σ(φ, γ̇).

In this way one may locate φJ ≈ 0.843.
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1.3 Linear behavior

When the overlap is very small the particles should follow exactly the same
paths, only with different velocitites ∝ γ̇. This also means that all the forces
should be ∝ γ̇ and with Eq. (4) we conclude that σ/γ̇ should collapse in the
low-γ̇ limit.
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1.4 Scaling analysis

In this case we don’t have any expression for the free energy, but our starting
scaling assumption is for a quantity that is like an order parameter,

σ(δφ, γ̇) = b−y/ν f̃(δφb1/ν , γ̇bz), (5)

where δφ = φ− φJ . Taking γ̇bz = 1 gives b = γ̇−1/z and

σ(δφ, γ̇) = by/zνf(δφ/γ̇1/zν). (6)

With q = y/zν this becomes

σ

γ̇q
= f(δφ/γ̇1/zν). (7)

The left figure below shows a good collapse of our data for shear rates in the
range 10−9 ≤ γ̇ ≤ 2× 10−7. The figure to the right also includes data up to
γ̇ = 2× 10−5 and the collapse is then not at all convincing.
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1.5 The exponent β

We are interested in the divergence of the shear viscosity,

η ≡
σ

γ̇
∼ (φJ − φ)−β. (8)

Starting from Eq. (7), and noting that we may define a new function f2(x) =
f(x)/|x|a, with some arbitrary power a, we chose that exponent such that
the γ̇-dependence cancel out and write

σ

γ̇
=

1

γ̇1−q

σ

γ̇q
=

1

γ̇q−1

∣

∣

∣

∣

∣

γ̇1/zν

δφ

∣

∣

∣

∣

∣

(q−1)zν

f2

(

δφ

γ̇1/zν

)

= |φJ − φ|−(q−1)zνf2

(

δφ

γ̇1/zν

)

.

(9)
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Since we expect the behavior |φJ − φ|−β for sufficiently small γ̇ we conclude
that f2(x) → const for large x. A comparison with Eq. (8) gives

β = (q − 1)zν, (10)

and the numerical values in the figure above give β ≈ 2.67.

2 Other jamming models

2.1 Reformulation of the minimal model

For a more general discussion it is convenient to reformulate the above dy-
namics by introducing a dissipative force fdisi = −kd(vi − vS). Newton’s
equation then gives

mi
d2ri
dt2

=
∑

j

[f elij + fdisij ], (11)

where mi is the mass of particle i and the sum is over all particles j in contact
with particle i. For overdamped dynamics with mi = 0 we recover Eq. (3),

0 = f eli − kd(vi − vS) ⇒ vi = vS +
1

kd
f eli .

2.2 Contact dissipation

If there is only a number of particles and no substrate (or fluid) that the
particles can disspate energy against, the above model is not very realistic.
A realistic dissipation model is then “contact dissipation”,

fdisij = −kd(vi − vj). (12)

It turns out to be difficult to simulate this model with mi = 0. The com-
mon choice is instead to take the mass to be sufficiently small that we get
essentially the same behavior as in the true overdamped dynamics. It is also
interesting to consider effects that appear due to the finite particle masses.

2.3 Particle rotations

A closer look at Eq. (12) shows that it is unrealistic in the sense that there is
nothing that guarantees torque balance. The next step towards a more real-
istic model is therefore to introduce moments of inertia and angular velocities
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and also modify the dissipation equation to read

fdisij = −kd(v
c
i − vc

j), (13)

where vc
i and vc

j are now the velocities at the points of contact.

3 Some recent results

3.1 Contact number and relaxation time

A key result from the research on jamming is that the motion becomes im-
possible when the particles have an average of four contacts and one therefore
expects δz = 4 − z to be an important quantity to characterize the system.
We will now relate δz to the relaxation time which is determined from a large
number of runs where we do the following steps:

1. shear at a constant shear rate,

2. suddenly stop the shearing, and

3. let the system relax to (almost) zero pressure.

At the end of such relaxations the pressure decays exponentially (left figure
below) and we can determine the relaxation time τ1.
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By analyzing the final configurations we get the average number of con-
tacts z1 and thereby values (τ1, z1). Plotting τ1 against δz1 ≡ 4− z1 give the
figure above to the right. With uz for the vanishing of δz as φJ is approached,
δz ∼ (φJ − φ)uz and the expectation that τ should behave the same as η to-
gether with Eq. (8) we expect τ ∼ δz−β/uz . With uz = 1 we note that the
value β/uz = 2.69 is consistent with the value β ≈ 2.67 from above.
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3.2 Correlation length

It is possible to determine the correlation length by considering the expecta-
tion value of

gx(x) = 〈vx(r)vx(r+ xx̂)〉, (14)

which is a quantity that (mostly) decays exponentially with a decay length
ξ. This ξ diverges as jamming is approached, i.e. φ → φJ and γ̇ → 0.

3.3 Non-Newtonian mixtures

A phenomenon of much interest is the dramatic change in the viscosity of
mixtures of water and cornstarch from a liquid behavior at slow stirring to
a solid-like behavior at more rapid impacts. The common explanation of
this phenomenon is that there is usually a liquid layer between the particles
that serves to lubricate the contacts but that this layer gets broken when the
interparticle forces are above a certain threshold.

This need not be the whole truth. The figure below shows a very dramatic
increase in shear viscosity with shear rate in one of our models (contact
dissipation plus rotations) even though the model lacks the lubrication layers
that are assumed to be essential for this behavior.
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