Umeå Universitet Department of Physics Monte Carlo methods Peter Olsson

Examination, Monte Carlo methods, 7.5hp, 2014–06–04, at 9:00–15:00, Östra paviljongen.

Allowed aids: Calculator, Beta, Physics Handbook.

Hand in each problem on a separate page. The calculations and the reasoning should be easy to follow. *Good luck!*

1 Basic statistics

- a) Consider independent, random variables x_i with average μ and variance σ^2 . The average of N such variables is $m = (1/N) \sum_i x_i$. What is σ_m^2 , the variance of m? (1p)
- b) Derive this result! (2p)
- c) In simple (as opposed to self-avoiding) random walk we have an (2p) important result for $\langle S_N^2 \rangle$ which is related to the above. Here $S_N = \sum_{i=1}^N x_i$ and x_i are independent unit vectors. Show that result, either from basic principles or from the result above.
- d) Specialize to the case where the x_i are from a uniform distribution (2p) between -1 and 1 and N = 100. What is the distribution of m?

2 Theory behind Markov chains Monte Carlo

A Markov chain may be described as a transition matrix p_{ij} .

- a) Describe the three conditions that have to be fulfilled by this ma-(2p) trix and explain why they are necessary. Hint: The first has to be true for all p_{ij} , the second is for p_{ii} , and the last concerns $\sum_{i} p_{ij}$.
- b) Write down the detailed balance condition. Use π_i to denote the (2p) desired probability distribution.
- c) Demonstrate that a matrix p_{ij} that fulfills the detailed balance (2p) condition will preserve the desired probability distribution π_i .

3 General questions

a) What is the phenomenon common to earthquakes and other phe- (2p) nomena that self-organized criticality tries to explain?

- b) The Watts-Strogatz model was invented to go gradually from an (1p) ordered to a disordered network. Sketch the ordered network and explain the effect of the rewiring probability on the behavior.
- c) Explain *preferential attachment* which was conceived by Barabási (2p) and Albert. What is the peculiar property of the networks generated with preferential attachment?
- d) Which of the following statements are true about "universality (2p) classes"? (Correct/wrong answers give ± 0.5 p, but a negative total is taken to zero.)
 - 1. Two models that are in the same universality class have the same values of all the critical exponents.
 - 2. Two models that are in the same universality class have the same critical temperature.
 - 3. The universality class doesn't change with the number of spin components.
 - 4. The universality class doesn't change with the number of nearest neighbors.
- e) Show that the 1D Ising model is disordered for all T > 0. (2p)

4 Expectation values

For small lattices it is possible to use three different methods to calculate the properties of the Ising model:

- i) Through a complete enumeration of all the possible states.
- ii) By generating a set of randomly produced configurations.
- iii) Through a Monte Carlo simulation.
- a) Describe the formulas that should be used to calculate expectation (3p) values in methods i) through iii). Assume that we have access to A_{ν} and the energy E_{ν} for each generated configuration and want to calculate $\langle A \rangle$ at inverse temperature β .
- b) Why could it sometimes be motivated to study a system through (1p) a complete enumeration?
- c) Consider a complete enumeration of a $L \times L$ Ising model. What is (2p) the maximum size L that would be possible to study in 24 hours on a single 3GHz-processor. Base your answer on some reasonable assumptions.

5 Scaling analysis

One way to analyze experimental data (or simulations at big lattices) (4p) is to plot $m/|t|^a$ versus $h/|t|^c$. Start from $m \sim \partial f/\partial h$ and

$$f(t,h) = b^{-d} f(tb^{y_t}, hb^{y_h}),$$

and express a and c in terms of d, y_t , and y_h .

(The formulas below are perhaps not really needed.)

	definition	With d, y_t , and y_h
α	$C \sim T - T_c ^{-\alpha}$	$2 - d/y_t$
β	$m \sim (T_c - T)^{\beta}$	$(d-y_h)/y_t$
γ	$\chi \sim T - T_c ^{-\gamma}$	$(2y_h - d)/y_t$
δ	$m \sim h^{1/\delta}, T = T_c$	$y_h/(d-y_h)$
η	$g(k) \sim 1/k^{2-\eta}, T = T_c$	$d+2-2y_h$
ν	$\xi \sim T - T_c ^{-\nu}$	$1/y_t$