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Chapter 1

Introduction

These notes are intended as an introduction to Monte Carlo methods in
physics with an emphasis on Markov chain Monte Carlo and critical phe-
nomena. Some simple stochastic models are also introduced; many of them
have been selected because of there interesting collective behavior. The term
Monte Carlo is used in the broad sense to contain all kinds of calculations
that can be performed with the help of random numbers.

1.1 Buffon’s needle

The common first example of a stochastic calculation is Buffon’s needle –
the calculation of the value of π by throwing a needle on a plane surface
with parallel straight lines separated by a fixed distance. If the length of
the needle is equal to the distance between the lines, the probability that
the needle will cross a line is equal to 1

π

∫ π
0 dθ sin θ = 2/π. By throwing the

needle a large number of times it is then possible to estimate π through the
fraction of throws that hit the line.

Whereas the above example nicely illustrates the stochastic element of
Monte Carlo simulations it doesn’t properly convey the strength, beauty,
and usefulness of MC simulations. This example differs in at least the two
following ways from usual MC simulations:

• The calculation of π may be done in numerous other more efficient
ways. In contrast MC methods are normally used for problems that
would otherwise be considered very difficult or even intractible.

1



2 CHAPTER 1. INTRODUCTION

• The calculation of π would be much more precise if the experiment
could be done in a systematic instead of a random way. One could
then be lead to believe that a carefully chosen set of numbers would
do better than the random numbers in the MC simulations, but that is
indeed not the case. In some applications it is even the case that one
needs a very high quality of the random numbers (very low degree of
correlations) to obtain the correct result.

1.2 Models in Physics

Virtually all real world phenomena are complex and complicated. In spite
of this we will here focus on a number of simple models. There are actually
several good reasons for doing so:

• When one is trying to arrive at an understanding of some phenomenon
it is necessary to turn to simplified versions of the system. Consider
the opposite case that one actually managed to include everything in
the calculation and obtained perfect agreement with experiments. This
would be a great triumph for the people involved in the work, but would
not provide any new understanding of what is going on. In contrast,
the construction and analysis of a simple model that could be found
to capture certain key features of the original system could add some
new understanding about the mechanisms that are responsible for the
obtained behavior.

• Many simple models are general enough to describe a large number of
different systems. This means that even though the original motivation
for a study usually comes from a single specific problem, the result can
often be taken over to an entirely different context. The simple models
may therefore function as tools in a conceptual toolbox.

• The development of physics since the beginning of the 70’s has stressed
the importance of universality – the insight that certain properties may
be altogether insensitive to many of the details of the system. This
means that the most efficient approach is to try to find and analyze the
simplest possible model that belongs to the same universality class as
the problem under consideration.
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After stressing the use of the simple models it should be emphasized that
most MC methods are general and flexible enough to work with models of
arbitrary complexity.

1.3 Different kinds of Monte Carlo simula-

tions

There are at least three different kinds of Monte Carlo simulations:

• Transport simulations. The basic problem here is an energetic par-
ticle (e.g. a neutron) that reaches a shield. It will then collide with the
atoms in the shield and cause different kinds of reactions. The ques-
tion is how much that will get through. Instead of keeping track of
the position of the atoms in the shield and try to calculate the events
according to the precise position and momentum of the incident par-
ticle, (which would be terribly complicated and according to quantum
mechanics would still not be deterministic) the idea is here to choose
the outcome of the collision by random. This collision could in turn
give rise to a complex chain reaction where all the different events are
similarly chosen by random.

• Markov Chain Monte Carlo. This is a method that is very useful
in statistical physics where we want the configurations to appear with
a probability proportional to the Boltzmann factor. This is achieved by
constructing a Markov chain with the desired property. Monte Carlo
in statistical physics is a big field that has exploded into a number of
different methods of which several are very beautiful. Beside the meth-
ods for classical statistical mechanics that are covered in this course
there are also many different ways to do Quantum Monte Carlo.

• Simple stochastic models. These should maybe not be called Monte
Carlo, but the term is frequently used for all kinds of simulations that
make use of random numbers.
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Chapter 2

Random variables and
distributions

Random variables arise when repeated attempts under apparently identical
conditions fail to give the same results. We will denote the random variable
by x. The random variables are usually distributed in a way which can be
approximated by a simple mathematical function — the probability density
function (pdf), p(x). The meaning of this function is that the probability for
a sample to be within the interval x to x+ dx is

p(x)dx.

The probability density function should of course be normalized,

∫

dx p(x) = 1,

and for the case of discrete variables that can only take certain values x(i),
the corresponding expression is

∑

i

p(x(i)) = 1.

Content of this chapter

We will below first define two properties—mean and variance—that are used
to characterize various distributions. We then turn to the art of estimating

the same properties from a finite number of random variables. To estimate

5



6 CHAPTER 2. RANDOM VARIABLES AND DISTRIBUTIONS

the mean is usually trivial; the focus is therefore on estimating the variance
which is needed to get an estimate of the uncertainity in the obtained mean.
We will then be concerned with various methods to generate random samples
from various simple distributions. In the last subsection we introduce Markov
chains that are very important e.g. to generate multidimensional samples
from complicated distributions.

2.1 Distributions

Two quantities are used for characterizing distributions: the mean µ and the
variance σ2. The mean is obtained as

µ =
∫

dx x p(x).

The variance is a characteristic measure of the spread of the variables around
the mean. It is given by

σ2 =
∫

dx (x− µ)2 p(x).

For the case of discrete variables the integrals above should of course be
replaced by summations.

2.1.1 Distribution of a combination of variates

Consider the common case where z is the sum of two random independent

variables, z = x+ y. In that case

µz = µx + µy,

and for the variance we obtain

σ2
z =

∫

dx px(x)
∫

dy py(y) ((x+ y)− (µx + µy))
2

=
∫

dx dy px(x)py(y)
[

(x− µx)
2 + 2(x− µx)(y − µy) + (y − µy)

2
]

=
∫

dx px(x)(x− µx)
2 +

∫

dy py(y)(y − µy)
2 = σ2

x + σ2
y

A generalization that follows directly is for the average of N independent
random variables,

m =
1

N

N
∑

i=1

xi, (2.1)
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for which we find µm = µx, but also the important result for the variance of
the average of N independent variables,

σ2
m =

1

N
σ2
x. (2.2)

2.1.2 Distributions with two correlated variables

It is also common to have correlations between the variables. The distribution
is then a single function of two variables p(x, y) instead of two functions of
one variable each. Introduce the covariance,

cov[x, y] =
∫

dxdy (x− µx)(y − µy)p(x, y).

From the derivation above we find

σ2
z = σ2

x + σ2
y + 2 cov[x, y].

A quantity that gives a normalized measure of the strength of the correlations
is the correlation coefficient,

ρ =
cov[x, y]
√

σ2
x σ

2
y

.

2.1.3 Distributions of discrete variables

We now turn to some useful distributions. They naturally divide into two
groups: distributions with discrete variables, and distributions with contin-
uous variables.

The binomial distribution

The binomial distribution appears whenever the outcome may be classified
into two mutually exclusive classes, x = 0, 1. The distribution is then

p(x) =

{

1− α, x = 0,
α, x = 1,

or
p(x) = αx(1− α)(1−x),
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The mean and the variance are readily found to be

µ = α,

σ2 = α(1− α).

The common use of the binomial distribution is to determine n, the num-
ber of successes (x = 1) out of N attempts. This is given by

PN(n) =
N !

n!(N − n)!
αn(1− α)(N−n), 0 ≤ n ≤ N.

For this case the above expressions for the mean and the variance should just
be multiplied by N .

The Poisson distribution

Consider some kind of process that depends on a number of independent
events. If the average time between two successive events is τ then the average
number of such events during a time t is µ = t/τ . The Poisson distribution,
which describes the probability that exactly n events have taken place, is
given by

p(n) =
µn

n!
e−µ.

This is properly normalized,
∑

n p(n) = 1. How can you see that? For the
variance of this distribution we have σ2 = µ.

2.1.4 Distributions of continuous variables

The uniform distribution

The pdf of the uniform distribution is constant for an interval of x, and zero
otherwise,

p(x) =
1

b− a
, a ≤ x ≤ b.

The mean and variance are µ = (b + a)/2, σ2 = (b − a)2/12. For the
standardized form, with a = 0 and b = 1 the variate will be denoted by ξ.
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The Gaussian distribution

This is the most important distribution in physics. Its probability density
function has the form

p(x) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

where the mean and variance appear explicitely in the formula.
One reason for the importance of the Gaussian distribution is that it

appears as soon as one considers the mean m of a number of variates, xi,
Eq. (2.1). The remarkable fact is that the variable m will to a good ap-
proximation be Gaussian distributed with variance σ2

x/N regardless of the
distribution of x. The only requirement is that σ2

x is finite and the N is not
too small. N ≥ 10 is often enough. This is the Central Limit Theorem.

The exponential distribution

The time interval between successive random events (as discussed in the
Poisson distribution) follow an exponential distribution,

p(x) =
1

µ
e−x/µ, x ≥ 0.

The variance is σ2 = µ2.

The power law distribution

This distribution is only defined for x ≥ x0, with x0 > 0 and is only possible
to normalize for γ > 1, the mean is only defined for γ > 2 and the variance
only for γ > 3. The pdf is given by

p(x) = C0x
−γ,

where the normalization constant is C0 = (γ − 1)x
(γ−1)
0 .

2.2 Estimation

We now leave the mathematically well-defined and precise distributions and
turn to analyses that can be made from a finite number of samples. It is
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then necessary to distinguish between the true values of the mean and the
standard deviation and the corresponding values that may be estimated on
the basis of finite samples. We therefore introduce m for the estimate of the
mean, µ, and s2 for the estimate of the variance, σ2.

2.2.1 Mean and variance

With a population of N observables xi the obvious estimate of the mean is

m =
1

N

∑

i

xi, (2.3)

whereas the estimate of the variance of xi is

s2 =
1

N

∑

i

(xi − µ)2. (2.4)

Note first that the prefactor 1/N compensates for the N terms in the sum.
This value is therefore not expected to change with N . It also has a very
direct interpretation: a plot of xi vs i would produce a cloud where s is a
measure of the width of this cloud of points. To be more precise, about 68%
of the points would be between µ− s and µ+ s.

Note also that the true value of the mean (= µ) is used in this expression.
In some cases the correct value of µ may be known e.g. from symmetry
properties of the problem, but in most cases we have to instead make use of
the estimated mean m. With the estimated mean m instead of µ Eq. (2.4)
instead becomes

s2 =
1

N − 1

∑

i

(xi −m)2. (2.5)

This follows from the observation that the variance in the estimate of m is
σ2
m = σ2/N , cf. Eq. (2.2). The correction factor of (N−1)/N appears below:

s2naive =
1

N

∑

i

(xi −m)2 =
1

N

∑

i

(xi − µ− (m− µ))2

=
1

N

∑

i

[

(xi − µ)2 − 2(m− µ)(xi − µ) + (m− µ)2
]

=

[

1

N

∑

i

(xi − µ)2
]

− (m− µ)2

= s2 − s2m =
N − 1

N
s2.
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which shows that s2 = s2naiveN/(N − 1) gives an unbiased estimate of σ2.
In practice one often collects

∑

xi and
∑

x2i in the simulations. Two
useful equations are then

s2 =
1

N − 1

(

∑

x2i −
1

N

(

∑

xi
)2
)

, (2.6)

and

s2 =
N

N − 1

(〈

x2
〉

− 〈x〉2
)

≈
〈

x2
〉

− 〈x〉2 . (2.7)

2.3 Error estimates of averages—variance of

the mean

We now turn to a different question: What is the precision in our estimated
mean? This is necessary as soon as we like to compare one estimate with
another. It is only if the difference is much bigger than the estimated uncer-
tainty that we can say that two values are truly different.

Under the common assumption that the obtained averages are from a
normal distribution we can also estimate the likelyhood that our average is
within ±σA, ±2σA, or ±3σA from the true average µA. These figures are

P (| 〈A〉 − µA| < σA) ≈ 68%,

P (| 〈A〉 − µA| < 2σA) ≈ 95%,

P (| 〈A〉 − µA| < 3σA) ≈ 99.7%.

It turns out that the precision of an average—and thereby the determi-
nations of s2m—are strongly affected by correlations between the data points.
We therefore begin with the simplest case of independent data.

2.3.1 Independent data – no correlations

In the absence of correlations between the measurements x0 through xN−1

the estimate of the variance of m is

s2m =
1

N − 1

(〈

x2
〉

− 〈x〉2
)

. (2.8)

This could e.g. apply to cases like percolation where the random configura-
tions are generated independently of one another. Note that this formula is
for the variance of the mean and much as expected this is a quantity that
decreases when we have more samples.
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2.3.2 Correlated data points

It is very common to have time series with correlations between the successive
samples, i.e. 〈δxiδxi+j〉 6= 0, where δxi = xi − µ. These correlation usually
decay with a correlation time τ ,

rj = 〈xixi+j〉 − 〈xi〉2 ∼ e−j/τ ,

which we will return to later.

2.3.3 The blocking method

The common solution to the problem of correlations is to group the N mea-
surements together into Nb blocks with Ns samples each, X0 through XNb−1,

Xj =
1

Ns

(j+1)Ns−1
∑

i=jNs

xi, j = 0, . . . , Nb − 1.

If Ns is chosen larger than τ (Ns ≫ τ) one expects the correlations between
successive blocks to vanish and since the values, to a good approximation,
are uncorrelated we may again use the simple formula

s2m =
1

Nb − 1

(〈

X2
〉

− 〈X〉2
)

.

2.4 Generating random variables

We will here mainly be concerned with pseudo random numbers that are
generated by some kind of deterministic algorithm and therefore in some
sense not are very random at all. They should be distinguished from genuine
random numbers that are usually generated from measurements on radiactive
substances, see http://www.fourmilab.ch/hotbits. It is actually possible
to buy CD:s with huge numbers of genuine random numbers that at least
historically have had their use within cryptography.

2.4.1 Standard random numbers

The discussion below is very short in spite of the fact that the random num-
ber generators is a very important and thorougly studied subject. Incorrect
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results are now and then produced even in research papers due to bad quality
of the random numbers. The most famous such case is the special purpose
processor that was built for performing extensive simulations on the 3D Ising
model (see Sec. 4) but produced incorrect results because of the bad built-in
random number generator. Furthermore, a paper from 1992 revealed prob-
lems with several well-known and often used random number generators. The
situation may be summarized with this quote from Donald E. Knuth:

. . . random numbers should not be generated by a method chosen
at random.

The basic problem in random number generation is to generate a sequence
of random real numbers uniformly distributed in the range 0 ≤ ξ < 1. It is
then possible to transform them into random numbers from other distribu-
tions.

Most algorithms used to produce random numbers work with integers
between 0 and m − 1 where m is a large number. On a computer with 32
bit integers it is common to choose m = 231 = 2147483648 which means
that m − 1 = INT MAX = 2147483647. The random number generator gives
a sequence r0, r1, r2,. . . , rn and the standard random numbers are then
obtained as ξn = rn/m.

The simplest choice is to iterate with a simple function

rn = f(rn−1).

Regardless of the choice of function this method will give a cycle of integers
that starts to repeat itself as soon as rk = r0 for some k. The cycle length k
can not be larger than the available number of integers, i.e. k ≤ m. To get
a good random number generator one should have a long cycle.

It could seem that the cycle length k = 232 ≈ 109 would never pose a
problem. However, considering the study of site percolation on a 256 × 256
lattice. The generation of each such lattice requires 216 random numbers
which means that the random number generator would have gone through
its cycle after 232/216 = 65536 configurations have been produced. If the
program was run longer the same results would be obtained over again and
the precision in the results would not improve any further.
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The linear congruential generator

A common kind of random number generator is the linear congruential gen-
erator,

rn = (a rn−1 + c) mod m

where “mod” is the modulus operation, the remainder after a division. To
get the longest possible cycle a and c have to be chosen with care. There are
however some hidden correlations between the random numbers produced in
this way that in some cases might have adverse effects on the results.

Reshuffling algorithm

To wipe out the correlations one can use a reshuffling algorithm. A simple
one makes use of an array ofN integers j0 through jN−1. The random number
generator is first used both to fill this array with integers and to calculate the
value y. The random numbers are then produced by repeating the following
steps. Here ⌊. . .⌋ denotes the floor function which is what you automatically
get in the computer if all the numbers involved in the operations are integers.

1. calculate an index k = ⌊yN/m⌋,

2. set y = jk and return y as the new random number,

3. assign a new number to jk from the linear congruential generator.

Lagged Fibonacci generator

The idea here is to generate rn from a set of older random numbers. The
choice

rn = (rn−r + rn−s) mod m

with r = 24 and s = 55 is common and will give the random number gen-
erator a cycle of at least 255 ≈ 1016. If m = 232 is choosen the modulus
operation is made automatically through overflow in the addition. To make
this method work one first needs to feed the generator with a vector of num-
bers produced with another method. A listing of the C code for a Lagged
Fibonacci generator is found in Appendix A.1.
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2.4.2 Uniformly distributed integers

There are many cases where one wants to generate integers 0 ≤ i < imax.
One such situation is in the simulation of a random walk in d dimensions
where one wants to choose one out of 2d− 1 directions by random. A simple
way to achieve this is to use

⌊imax ξ⌋

but since this involves a conversion back and forth between integer and float-
ing point variables it isn’t very efficient. A more efficient method makes use
of integer division:

rn
rmax/imax + 1

,

where rmax = m − 1 is the largest possible value from the random number
generator. Note first that the denominator usually may be evaluated already
at compilation which means that only a single operation has to be performed
at run-time. Second, note that the “+1” in the denominator is necessary to
get random numbers < imax. Without the “+1” the random number may be
= imax which could well be disastrous. With the large rmax normally used in
simulations this will not happen very often and could therefore be an error
that is difficult to find.

2.4.3 Integers from arbitrary distributions

The task is here to sample from an arbitrary distribution of discrete values
x(i) with probabilities p(x(i)). One way to solve it is through the following
recipe:

Generate ξ. Choose the value x(k) where k is the smallest integer
such that P (x(k)) ≡ ∑k

i=1 p(x
(i)) ≥ ξ.

2.4.4 Method of inversion

The recipe described above may also be used for certain continuous distribu-
tions:

Generate ξ, then choose the value x such that P (x) ≡
∫ x
−∞ dx′p(x′) = ξ.
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This method relies on the possibility to integrate and to find the inverse
function. As an example consider sampling from the exponential distribution,

p(x) =
1

µ
e−x/µ, x ≥ 0.

We then have

P (x) =
1

µ

∫ x

0
dx′e−x′/µ = 1− e−x/µ,

and the requirement that P (x) = ξ leads to

e−x/µ = 1− ξ ⇒ x = −µ ln(1− ξ).

Since the distribution of 1 − ξ is the same as the distribution of ξ, this may
be simplified one step further to

x = −µ ln ξ. (2.9)

2.4.5 Generate Gaussian random numbers

The Gaussion distribution is commonly used and there is a nice method –
the Box Müller method – that produces random numbers from the Gaussian
distribution. Note first that the inversion method may not be used since the
integral P (x) =

∫ x
−∞ dx′e−x′2/2 cannot be expressed in terms of elementary

functions.
The Box-Müller method makes use of two random numbers ξ1 and ξ2 to

produce two independent variables x and y from the Gaussian distribution,

p(x) =
1√
2π
e−x2/2,

p(y) =
1√
2π
e−y2/2.

Changing variables to r and θ with x = r cos θ, and y = r sin θ gives

p(x)dx p(y)dy =
1

2π
e−(x2+y2)/2dx dy =

dθ

2π
e−r2/2rdr ≡ p(θ)dθp(r)dr.

We may then get an expression for P (r),

P (r) =
∫ r

0
dr′ r′e−r′2/2 =

[

−e−r′2/2
]r

0
= 1− e−r2/2,
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and the method of inversion gives

r =
√

−2 ln ξ1,

θ = 2πξ2,

from which x and y may be calculated directly.

2.4.6 The acceptance-rejection method

In many cases none of the above methods are directly applicable and one
can then often make use of von Neumann acceptance-rejection method. Sup-
pose that we want random numbers from the distribution p(x) that is rather
similar to the distribution p′(x). Write

p(x) = CQ(x)p′(x).

where the constant C is chosen such that the maximum value of Q is equal to
unity. The idea is then to first generate a random variable x, from a random
number ξ1, and then accept that variable with the probability Q(x). That
is, accept if Q(x) < ξ2, reject and try over again otherwise. The efficiency
factor is the inverse of C.

A different version of the acceptance-rejection method may be used to
generate points uniformly within the unit circle: The idea is to first generate
points uniformly within the square given by −1 < x < 1 and −1 < y < 1 and
then reject the points that are not within the unit circle, i.e. all points for
which x2 + y2 < 1. The accepted points will then be uniformly distributed
within the unit circle.

2.5 Sampling a distribution with Markov

chains

Markov chains may be used to sample multidimensional variates and are
often used when the normalization constant is unknown, i.e.

π(x) = Cf(x).

One common example which will be our main use of MCMC is statistical me-
chanics, where the probability distribution is proportional to the Boltzmann
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factor,

π(x) =
1

Z
e−βE(x),

and the partition function Z is unknown.

We will first describe a “Markov chain” in general terms and will then
second consider how we should construct a Markov chain to give x from a
certain probability distribution.

2.5.1 Markov chain

Suppose that there is a finite number of possible configurations or multidi-
mensional variables x(i). A Markov chain is a random chain of these variables,
x1, x2,. . . produced by means of a transition matrix pij with the following
properties:

1. pij ≥ 0,

2. pii 6= 1,

3.
∑

j pij = 1 for all i.

Note that (1) is necessary since probabilities have to be non-negative, (2)
means that the chain may never come to a halt, and (3) means that the total
probability to go to some state must always be equal to unity.

If the system is left to perform a random walk according to these tran-
sition probabilities this will lead to a certain probability distibution πi ≡
π(x(i)). We have here for simplicity assumed a discrete set of possible config-
urations but Markov chains may easily be defined for the more general case
of a continuous configuration space.

2.5.2 Construct the transition matrix

The task is now to choose the transition matrix for the Markov chain such
that the desired probability distribution π(x) is obtained. A sufficient (but
not necessary) condition is to require detailed balance, i.e.

πipij = πjpji.
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That this gives the required probability distribution may be seen by consid-
ering the probability to be in state j after a given step which is

∑

i

πipij = πj
∑

i

pji = πj ,

where we have made use of the detailed balance condition followed by condi-
tion (3) above. The transition probability usually consists of two parts. We
write

pij = qijαij ,

where

qij = probability for the transition to be suggested

αij = probability for the transition to be accepted

Detailed balance may e.g. be fulfilled with the following choice for αij:

αij = min

(

1,
πjqji
πiqij

)

(2.10)

The Metropolis algorithm

One often has a symmetric targeting probability qij = qji. The acceptance
probability then simplifies to

αij = min(1, πj/πi), i 6= j, (2.11)

which is the choice in the Metropolis algorithm[1].

2.5.3 Correlations

As already mentioned the samples generated by the Markov chain will be
correlated to one another. This may be described by the time correlation
function which essentially measures how fluctuations from the average at a
certain time affect the same quantity a time t later. In terms of

δA(t) = A(t)− 〈A〉 ,

the time correlation function for the quantity A is

CA(t) = 〈δA(t′)δA(t′ + t)〉 . (2.12)
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The correlation time

The correlations usually decay exponentially. To see this, consider a simple
model where the dynamics at each time step contains both a memory and a
random part, r:

δA(t′ + 1) = a δA(t′) + (1− a)r.

After t units of time (neglecting the random contribution that will not con-
tribute to the average), this gives

δA(t′ + t) = at δA(t′),

and, after multiplying by δA(t′) and identifying a = e−1/τ , we get

δA(t′ + t)δA(t′) = e−t/τδA(t′)δA(t′).

Since 〈(δA(t′))2〉 is a constant we expect

CA(t) ∼ e−t/τ . (2.13)

For multidimensional variables x(i) and functions of these variables A(x(i))
this behavior is often only seen for reasonably large t, say t > τ . The
correlation time may also be different for different observables.



Chapter 3

The Lennard-Jones gas

The point with this chapter is to introduce Monte Carlo simulations of a
classical gas. To that end we first shortly review the different ensembles in
Sec. 3.1. In Sec. 3.2 we then show that the equations in the preceding section
may be understood by considering the different free energies as Legendre
transformations of the entropy. Sec. 3.3 is devoted to a short comparison of
molecular dynamics and Monte Carlo simulations. In Sec. 3.4 we consider the
steps necessary to go from the quantum formulation of statistical mechanics
(with a number of discrete quantum states) to a classical formulation where
each microscopic state is defined through the positions and the momenta of
all the particles. In that section we also give the simple recipe for a Monte
Carlo simulation in a gas of interacting particles. The last two sections
are devoted to the additional steps needed to include volume fluctuations
(Sec. 3.6), which are needed to do simulations at constant pressure, and the
creation and annihilation of particles (Sec. 3.7), needed for simulations in the
grand canonical ensemble, where the number particles is not a constant.

3.1 Summary of different ensembles

3.1.1 Microcanonical ensemble

The basic assumption behind equilibrium statistical physics is that all states
with the same energy are equally likely to show up. In a system where we
can control the entropy S (and thereby the heat transfer), the volume V , and

21
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the number of particles N , the system is described by the internal energy

E(S, V,N).

Infinitesimal changes of the control variables then change E according to

dE = TdS − pdV + µdN.

In statistical mechanics we often turn it the other way around and consider
the entropy as a function of the energy, S(E, V,N). The entropy is related
to the number of states with a certain energy,

Ω(E, V,N) =
∑

ν

δ(E − Eν),

(where δ(x) = 1 if x = 0; otherwise δ(x) = 0) through

S(E, V,N) = kB ln Ω(E, V,N). (3.1)

3.1.2 Canonical ensemble

In the common situation where our system is kept at a given temperature
the entropy as well as the energy will fluctuate and it is more convenient
to consider a quantity that is a function of the temperature (instead of a
function of the entropy). The Helmholtz free energy is given by the Legendre
transform,

F (T, V,N) = E(S, V,N)− TS,

and with d(TS) = TdS + SdT the differential becomes

dF = −SdT − pdV + µdN.

The probability for a configuration to show up is proportional to the Boltz-
mann factor, e−βEν , where β = 1/(kBT ), and a basic quantity is the partition
function

Z(T, V,N) =
∑

ν

e−βEν . (3.2)

This quantity is more than just a normalization constant and the relation to
the Helmholtz free energy is

F (T, V,N) = −kBT lnZ(T, V,N). (3.3)
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The expectation value of an observable A may now be written

〈A〉 =
∑

ν

PνAν =
1

Z

∑

ν

Aνe
−βEν , (3.4)

and as a special case the average energy is

〈E〉 = 1

Z

∑

ν

Eνe
−βEν = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
. (3.5)

The heat capacity may be determined from the fluctuations in the energy.
Using dT = −kBT 2dβ we get

C =
∂ 〈E〉
∂T

= − 1

kBT 2

∂ 〈E〉
∂β

=
1

kBT 2

∂

∂β

(

1

Z

∂Z

∂β

)

=
1

kBT 2





1

Z

∂2Z

∂β2
−
(

1

Z

∂Z

∂β

)2


 =
1

kBT 2

(〈

E2
〉

− 〈E〉2
)

.(3.6)

3.1.3 Gibbs ensemble—constant pressure

The common experimental situation is that the pressure is constant but that
the volume changes as e.g. the temperature is changed. 1 We now make a
Legendre transformation from the usual free energy F (T, V,N) to the Gibbs
free energy,

G(T, p,N) = F (T, V,N) + pV,

with the differential

dG = −SdT + V dp+ µdN.

The generalization of the partition function is

Φ(T, p,N) =
∑

V

e−βpVZ(T, V,N),

and the relation to the thermodynamic function is G = −kBT ln Φ.

1In some cases this is preferred in the simulations as well and it is actually rather easy
to generalize the MC simulations to allow for a fluctuating volume.
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3.1.4 Grand canonical ensemble

The grand canonical ensemble is useful in simulations with a given chemical
potential and a fluctuating number of particles. For the corresponding free
energy we have

FG(T, V, µ) = F (T, V,N)− µN,

the differential is
dFG = −SdT − pdV −Ndµ,

and FG = kBT ln Ξ,

Ξ(T, V, µ) =
∑

N

eβµNZ(T, V,N).

3.2 Gibbs entropy formula

In Sec. 3.1 we introduced the internal energy and Legendre transformations
to a number of different free energies. We also gave equations for the gener-
alizations of the partition function and the free energy in different ensembles.
The connection between all these ensembles may be clearer by instead con-
sidering the different free energies as Legendre transforms of the entropy. A
good starting point is the Gibbs entropy formula which is valid in all ensem-
bles,

S = −kB
∑

ν

Pν lnPν . (3.7)

This equation is—except for the presence of kB—the same as the expression
for the Shannon entropy, which plays a central role in information theory.

In the microcanonical ensemble we have

Ω(E, V,N) =
∑

ν

δE−EνδV−VνδN−Nν ,

and since Pν = 1/Ω(E,N, V ), the Gibbs entropy formula Eq. (3.7), gives

S(E,N, V ) = −kB
∑

ν

(1/Ω) ln(1/Ω) = kB ln Ω,

in accordance with Eq. (3.1). The microcanonical ensemble may be summa-
rized through

eS(E,N,V )/kB = Ω(E, V,N) =
∑

ν

δE−EνδV−VνδN−Nν . (3.8)
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In the canonical ensemble the dimensionless Helmholtz free energy,
βF , may be considered a Legendre transformation of S/kB,

−βF = S/kB − βE, (3.9)

We will now show that this follows from the application of the Gibbs entropy
formula Eq. (3.7), to the Boltzmann factor, Pν = 1

Z
e−βEν together with

Eq. (3.3):

S/kB = − 1

Z

∑

ν

e−βEν [−βEν − lnZ]

= β 〈E〉+ lnZ = β 〈E〉 − βF.

In the thermodynamic limit we may identify 〈E〉 with E and this is then in
agreement with Eq. (3.9). We write (compare with Eq. (3.8))

Z(β, V,N) = e−βF (β,V,N) =
∑

E

Ω(E, V,N)e−βE =
∑

ν

e−βEνδV−VνδN−Nν .

(3.10)
Likewise the free energy in the Gibbs ensemble is

−βG = −βF − βpV = S/kB − βE − βpV, (3.11)

and we have

Φ(β, p,N) = e−βG(β,p,N) =
∑

V

Z(β, V,N)e−βpVν =
∑

ν

e−βEν−βpVνδN−Nν .

Note the similarity between the exponents in this expression and the Legen-
dre transform, Eq. (3.11).

3.3 Monte Carlo versus Molecular Dynamics

A straightforward way to simulate a classical gas is Molecular Dynamics
(MD) where one simply integrates the equations of motion. The state of the
system is then specified by both position ri and velocity vi (or momentum)
for each particle. The equations of motion are

ṙi = vi,

mv̇i =
∑

j 6=i

Fij .
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There are efficient techniques that makes it possible to perform this kind of
integrations with high precision, but with the drawback that the simulations
are rather time consuming. The reasons are, first that there are lots of
calculations to be done for each time step and, second, that a small time
step is often needed to get reliable results.

When the goal is only to determine static (time-independent) quantities,
Monte Carlo simulations is a simpler and more efficient alternative. The
simulation may even in this case be thought of as a kind of dynamics in the
many-dimensional configurational space, but since (1) the configuration is
specified with only the position coordinates ri, and (2) we don’t need a small
time step (since we don’t try to mimic a realistic dynamics), the simulation
program becomes both considerably simpler and faster.

In contrast to MD where the dynamics is deterministic, the steps in a
Monte Carlo simulation are entirely stochastic. One uses the random number
generator first to suggest the change to the configuration and second to accept
or reject this change with a probability that (in most cases) only depends on
the temperature and the change in energy. Such a simulation is therefore an
implementation of a Markov chain, discussed in Sec. 2.5.

Monte Carlo simulations are commonly performed in the canonical en-
semble where the temperature is a controlling parameter and the configu-
rational energy fluctuates in the simulation. The average energy is then a
result from the simulation. Molecular Dynamics on the other hand is done in
the microcanonical ensemble where the total energy is specified in the start-
ing configuration and the temperature is measured from the average kinetic
energy, m 〈v2〉 /2. 2

3.4 Classical statistical mechanics

As discussed above the properties of a system at a fixed temperature T may
be determined from the partition function

Z =
∑

ν

e−βEν .

2These two cases are however not altogether different since the configurational energy

actually varies in Molecular Dynamics as well, since the kinetic degrees of freedom act as
a (finite) heat bath that couples to the configurational degrees of freedom. However, in
MD the temperature of the heat bath is not specified but has to be measured during the
simulation.
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The index ν serves to specify the quantum state. Since the set of states is
discrete, the partition function may be written as a sum.

For many purposes one can instead use classical statistical mechanics.
Each microscopic state is then a point in phase space,

(r1, r2, . . . rN ;p1,p2, . . .pN ) ≡ (rN , pN).

The energy associated with a point in phase space is a sum of the kinetic
and the potential energies,

H(rN , pN) = K(pN) + U(rN ),

where the kinetic energy is usually given byK(pN ) = 1
2m

∑

i p
2
i . The potential

energy may take on many different forms; one common approximation will
be discussed shortly.

With phase space given by a continuum, the sum over ν instead becomes
a many-dimensional integral over rN and pN ,

Z =
1

N !h3N

∫

drN
∫

dpNe−βH(rN ,pN ).

The prefactor comes from a comparison with a quantum formulation of an
ideal gas. The division by N ! makes sense if we recall that we are dealing
with identical particles. This means that the same state will be generated
N ! times by the integral and that is compensated for by the division by N !.

For the momentum part of the integral we have

∫

dpNe−(β/2m)
∑

i
p2

i =
(∫

dp e−(β/2m)p2
)3N

=
(

√

2πm/β
)3N

,

and with

vQ =
(

h/
√

2πmkBT
)3

, (3.12)

we are left with

Z =
1

N !

1

vNQ

∫

drNe−βU(rN ). (3.13)

3.4.1 To calculate expectation values

For a set of discrete states we have Eq. (3.4). The analogue for a continuous
set of states is

〈A〉 = 1

Z

1

N !

1

vNQ

∫

drNA(rN)e−βU(rN ).



28 CHAPTER 3. THE LENNARD-JONES GAS

The calculation of such averages (for simplicity we stick to the quantum
notation) may now in principle be done in two ways:

• Generate the configurations rN randomly, with the ri independent of
one another. The expectation value is then

〈A〉 =
∑n

ν=1Aνe
−βEν

∑n
ν=1 e

−βEν
, (3.14)

where “
∑

ν” now denotes a summation over n different random config-
urations. However, if one attempts to do this, one will find that most
configurations have a rather large energy and therefore a very small
Boltzmann factor. It will therefore be impossible to calculate the prop-
erties at most temperatures of interest. Except for very small systems
this is therefore an entirely impracticable method.

• Use some valid dynamics or Markov Chain Monte Carlo to generate the
configurations with a probability πν ∝ e−βEν . The expectation values
should then be calculated as simple averages,

〈A〉 = 1

n

n
∑

ν=1

Aν . (3.15)

This is a useful method that allows for a simple calculation of many
quantities that would otherwise be very difficult—if not altogether
impossible—to calculate. The only drawback is that the configura-
tions, and thereby the Aν , are not independent of one another.

3.4.2 Pair interaction

To get further we also need to specify the configurational part of the energy.
We then approximate the interaction energy by a sum of pair interactions:

U(rN ) =
∑

i

∑

j>i

u(|ri − rj|).

The pair interaction is attractive, u(r) ∼ −r−6, at large distances and repul-
sive at short distances. A common choice is to let the short distance repulsion
be ∼ r−12, which gives the Lennard-Jones potential

uLJ(r) = 4ǫ

[

(

σ

r

)12

−
(

σ

r

)6
]

.
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The minimum of the potential is

uLJ(rmin) = −ǫ, rmin = 21/6σ.

3.4.3 Expression for the pressure – the virial theorem

In a simulation with molecular dynamics it is possible to calculate the pres-
sure from the change of momentum the particles get when they bounce off
the walls. In a Monte Carlo simulation this isn’t possible and one instead
has to determine the pressure from a kind of correlation function by means
of the virial theorem. Note that this equation is only valid in ensembles with
a fixed volume. This follows since the starting point for the derivation is the
differential for the Helmholtz free energy.

The starting point is the differential of the free energy,

dF = −SdT − pdV + µdN,

which gives

p = −
(

∂F

∂V

)

N,T

.

Since βF = − lnZ we get

βp =

(

∂ lnZ

∂V

)

N,β

.

Because the Hamiltonian separates into two parts we may write

Z = ZkinZconf ,

where the kinetic part is independent of volume and is equal to Zkin = 1/vNQ
and

Zconf =
1

N !

∫

drNe−βU(rN ),

where the integration for each ri should be performed over the volume V .
Since only the configurational part depends on V , the pressure becomes

βp =
∂

∂V
ln
[∫

drNe−βU(rN )
]

.
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This differentiation is tricky since the limits of integration depend on V. To
get around this, change coordinates to

x = r/V 1/d ⇒ drN = V NdxN .

We then get

βp =
∂

∂V
ln
[

V N
∫

dxNe−β
∑

i<j
u(V 1/dxij)

]

=
d

dV
lnV N +

∂

∂V
ln
[∫

dxNe−βU
]

=
N

V
+

[

∫

dxN
(

−β∂U
∂V

)

e−βU

]

/[∫

dxNe−βU
]

.

(The integrations are here understood to be over a unit volume.) We also
have

∂U

∂V
=
∑

i<j

∂

∂V
u(V 1/dxij) =

∑

i<j

∂V 1/d

∂V
xiju

′(V 1/dxij) =
1

V d

∑

i<j

riju
′(rij)

which follows since

∂V 1/dxij
∂V

=
1

d
V 1/d−1xij =

1

V d
V 1/dxij =

1

V d
rij

Putting things together we get the virial theorem

βp =
N

V
− β

V d

〈

∑

i

∑

j>i

riju
′(rij)

〉

.

By doing the above a little bit more carefully with d
dc
u(cx) = x · ∇u(cx),

F = −∇u, and finally multiplying by kBTV , the expression becomes

pV = NkBT +
1

d

〈

∑

i

∑

j>i

rij · Fij

〉

. (3.16)

Note that this simplifies to the ideal gas law in the absence of interactions,
Fij = 0.
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3.5 Recipe for a Monte Carlo simulation

The Monte Carlo simulation of a classical gas of particles is our first imple-
mentation of Markov Chain Monte Carlo (MCMC), discussed in Sec. 2.5.
The standard implementation uses the Metropolis algorithm[1], Eq. (2.11).

0. Initialize by generating N positions ri by random.

1. Set i = 0.

2. Let ν denote the present configuration. Suggest a change ri → ri+∆r;
denote this trial configuration by ν ′. Here ∆r is a random vector where
each component is usually from a uniform distribution, −ǫ ≤ ∆rµ ≤ ǫ.

3. Calculate the energy difference Uν′ − Uν and

αν→ν′ = min
(

πν′

πν
, 1
)

= min
(

e−β(Uν′−Uν), 1
)

,

and accept the new configuration with probability α.

4. i→ i+ 1; if i < N goto 2.

Points 1–4 are often called a Monte Carlo sweep. Any serious MC simulation
should consist of many (say 106) such sweeps, first for thermalization and
then to collect data.

The parameter ǫ in “2.” is not specified and one is actually free to choose
it at will. The efficiency of the simulation will depend on this choice. A very
big ǫ will lead to a large fraction of big moves that will often be rejected.
A small ǫ, on the other hand, will give a high acceptance ratio but since
the particles move very short distances the configurations will change very
slowly. To get a high efficiency one tries to choose ǫ such that the acceptance
ratio is not far from 50%.

3.6 Ensemble with a fluctuating volume

To use a constant pressure and a fluctuating volume, the starting point is
the thermodynamic function, G(T, p,N) = −kBT ln Φ(T, p,N) where

Φ =
∫ ∞

0
dV e−βpV Z(T, V,N) =

∫ ∞

0
dV e−βpV V N

N !vNQ

∫

dxNe−βU(V ;xN ).
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The probability density for a certain configuration, (V, x1, . . . , xN), specified
by volume (or length L) and the relative position coordinates xi = ri/L, is
then

π(V,x1, . . . ,xN) =
V Ne−βpV e−βU(V ;xN )

Φ
.

The calculation of the acceptance probability when the position of an atom
changes is the same as before, but for changing the volume from Vold to Vnew
the acceptance probability should be calculated as min(πnew/πold, 1) where

πnew
πold

=
(

Vnew
Vold

)N

exp
(

−βp[Vnew − Vold]− β[U(Lnew, x
N)− U(Lold, x

N )]
)

.

We again stress that the virial theorem cannot be used to calculate the
pressure in an ensemble with constant pressure, since the starting point in
that derivation is the differential of the Helmholtz free energy F (T, V,N).

3.7 The grand canonical ensemble

One more difference between Monte Carlo and molecular dynamics is the
possibility to do the simulation with a varying number of particles. One
then uses the grand canonical ensemble with the chemical potential µ as a
parameter. The grand sum is

Ξ =
∞
∑

N=0

eβµNZ(T, V,N) =
∞
∑

N=0

eβµN

N !vNQ

∫

drNe−βU(N,rN ).

The acceptance ratio for moving a particle is the same as in the canonical
ensemble, but the steps to create or annihilate particles require a non-trivial
derivation. Consider creation that takes us from N to N + 1 particles and
annihilation that reduces the number of particles from N + 1 to N . The
basic requirement of detailed balance is

πiqijαij = πjqjiαji,

where π is the desired probability density, qij is the trial probability, and αij

is the acceptance probability. Let ’i’ stand for a state with N particles and
’j’ a state with N + 1 particles. For the probability densities we then have

πi =
eβµN

N ! vNQ
e−βU(N)drN
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πj =
eβµ(N+1)

(N + 1)! vN+1
Q

e−βU(N+1)drN+1,

whereas the trial probabilities are

qij =
dr

V (N + 1)
,

qji =
1

N + 1
,

where we have also considered the probability that the created or annihilated
particle has a certain index out of the N + 1 possible. From Eq. (2.10) the
acceptance probabilities should be

αij = min

(

1,
πjqji
πiqij

)

= min

(

1,
V eβµ

(N + 1) vQ
e−β[U(N+1)−U(N)]

)

,

αji = min

(

1,
πiqij
πjqji

)

= min

(

1,
(N + 1) vQ
V eβµ

e−β[U(N)−U(N+1)]

)

.
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Chapter 4

The Ising model

The kind of phenomenon we like to model with the Ising model is the be-
havior of a ferromagnet. In a ferromagnet the spontaneous magnetizationM
decreases with increasing temperature and vanishes at the Curie temperature
as

M ∼ (Tc − T )β. (4.1)

For many different magnets one finds β ≈ 0.3.

Beside being a model for a ferromagnet the Ising model has been ex-
tremely important for the developement of our understanding of critical phe-
nomena. The Ising model has been called the Drosophila1 of statistical me-
chanics because it has been so thoroughly studied and manipulated in all
conceivable ways.

4.1 Lattices

Many of the models we will discuss live on a lattice. Even though there
are many different kinds of lattices we will usually do well with the simplest
kind that in one dimension (1D) is a set of points along (say) the x axis
with unit distance. This concept easily generalizes to higher dimensions: the
square lattice (2D) contains all points (i, j) with i and j integers in the x-y
plane and the cubic lattice – as well as higher dimensionalities – are obvious
generalizations.

1A fruit fly that has been thoroughly studied in genetics by innumerable experiments
with different kinds of mutations.

35
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In numerical calculations the mathematical objects with an infinitude of
points are not so relevant. We instead need the finite lattices of size L in all
directions. We will throughout use the C-style convention to let the indices
go from 0 up to L − 1. The number of points in a d-dimensional lattice is
N = Ld. Another important quantity is the coordination number that is the
number of nearest neighbors to each site, z = 2d.

Associated with the lattice is the way to treat the boundaries and the
simplest and best way is to use periodic boundary conditions. In 1D this
means that we connect the beginning and the end of the line of sites to make
a closed circle. In higher dimensions the opposite edges (edges in 2D, planes
in 3D) are considered connected to one another and there is then nothing
special with a site at a boundary; all sites have an identical surrounding with
the same number of nearest neighbors.

Since quantites determined from simulations often have a dependence on
the system size, the subscript L will often be used to stress this fact without
further notice.

4.2 Definition of the model

The Ising model is the simplest possible model of a ferromagnet. (To be
more precise it models a magnet with uniaxial symmetry.) The basic build-
ing blocks are called “spins” even though they rather correspond to the do-
mains in a ferromagnet with different direction of magnetization. To define
the model we have to specify (1) the properties of the individual degrees of
freedom (2) their spatial organization, and (3) an expression for the energy.

1. A set of spins si with two different states, s =↑, ↓, or in a convenient
mathematical language, s = +1,−1.

2. A lattice that specifies the position of the spins. This may e.g. be a 1D
lattice, a 2D square lattice, a 2D triangular lattice or various kinds of
lattices in 3D, e.g. the simple cubic.

3. The expression for the Hamiltonian is

H({si}) = −J
∑

〈ij〉

sisj − h
∑

i

si, (4.2)

Here the notation “{si}” means “s1, . . . , sN” and



4.2. DEFINITION OF THE MODEL 37

• J is a coupling constant with the dimension of energy,

• ∑

〈ij〉 denotes a sum over all pairs i, j that are nearest neighbors,2

• h is the magnetic field (with the coupling constant between the
field and the spins absorbed in h).

Note that we are usually interested in the behavior of the model in the limit
of an infinite system, N → ∞. One reason is that the physical systems,
that we ultimately want to compare with, are made up of a huge number of
particles or degrees of freedom. Another reason is that the phase transition at
a critical point is only perfectly sharp and well-defined in the limit N → ∞.

4.2.1 Basic properties

We will in the following usually be interested in the behavior of the model at
zero magnetic field, h = 0. From the Hamiltonian we then have the following
values for the energy at the link between spins si and sj,

si sj Hij

↑ ↑ −J
↓ ↓ −J
↑ ↓ +J
↓ ↑ +J

It is difficult to determine the behavior at general temperatures. In the
present model it is however easy to determine the properties in the limits
T → 0 and T → ∞.

The low-temperature limit

At zero temperature, β → ∞, the dominating term in the partition function
is from the configuration with lowest energy, the ground state. In the Ising
model the ground state is doubly degenerate since there are two states with
lowest energy; the states with only spin up or only spin down. With the
coordination number z the number of nearest neighbors for each spin, the
total number of nearest neighbor pairs is Nz/2. The ground state energy is
then E0 = −NzJ/2. Note that the ground states are perfectly ordered and
each have maximum magnetization.

2This notation is unfortunately similar to expectation values, but because of the exclu-
sive use of this notation in summations, the meaning is usually clear from the context.
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The high-temperature limit

At infinite temperature, β → 0, we have e−βEν = 1 which means that all
configurations are equally probable. We then expect 〈E〉 = 0 and a system
that is totally disordered.

Three possibilities

With perfect order at T = 0 and zero order at T → ∞ there are three
possibilities for how the “order” can depend on temperature. These are
illustrated in Fig. 4.1. Of these three possibilities it turns out that the last
one, Tc = ∞ is never realized but, depending on the dimensionality of the
system, one either has Tc = 0 or a finite value of Tc.

0 T ∞ 0 ∞ 0 ∞

Tc = 0 finite Tc Tc = ∞

Figure 4.1: The three panels show the three possibilities for how the “order”
may vanish as the temperature is increased. The first two possibilities are
realized in the Ising model in 1D and higher dimensionality, respectively.

4.3 Monte Carlo simulations for the Ising

model

We will now discuss the implementation of Monte Carlo for the 2D Ising
model but before doing that we will first consider calculating properties (as
e.g. the average energy) of the Ising model. Before jumping into Markov
chain Monte Carlo we will discuss some methods that at first could look like
possible alternatives but really are dead ends unless the system size is very
limited. (A similar discussion was presented in the context of a simulation
of classical particles in Sec. 3.4.1.)
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4.3.1 Some dead ends

Complete summation The simplest approach is to try and perform the
sum over all states on the computer. For all but the smallest sizes we how-
ever quickly run into difficulties since the number of different configurations
increases very rapidly with the system size. We may well handle L = 6
that gives N = 36 and 236 ≈ 7 × 1010 different configurations, but already
with L = 8 such a straighforward summation becomes completely hopeless
because of the more than 1019 different configurations.

Randomly generated configurations With the impossibility of per-
forming a complete summation the next approach becomes to try and per-
form the sums over a small but hopefully representative part of the configu-
rations. With the same configurations included in both the numerator and
the denominator in Eq. (3.14) the hope is that the value of the fraction will
stay close to the true value. The most natural idea is then to generate a large
number of configurations by random and use the found energy, Eν , together
with the observable Aν to calculate the expectation value.

Quite naturally, the values of Eν obtained in this way are centered around
0 with a standard deviation of J

√
2N . However, we are usually interested

in properties of the system in the vicinity of the ordering temperature, and
for the case of the 2D Ising model the average energy close to the transition
happens to be close to −1.4JN . For large N this is far out in the tail of the
distribution. A consequence of this is that the Boltzmann factor becomes
very small for most of the configurations generated in this way. This could
mean that the sums in Eq. (3.14) often are heavily dominated by only a few
terms. An estimate for L = 8 at Tc ≈ 2.269 shows that the fraction of sites
with Eν < 〈E〉 is less than 10−14 and this is a fraction that rapidly gets even
smaller as the system size increases. This clearly indicates that the approach
to randomly generate a subset of the configurations isn’t any very promising
one. It is clear that an entirely new idea is needed to get an efficient and
usable method and this is importance sampling by means of Markov chains.

Importance sampling The basic idea here is to generate the configura-
tions in a way that makes the probability for a configuration to show up in
our simulation proportional to the Boltzmann factor. As discussed above
that may be done by means of a Markov chain. When this is achieved, the
average is calculated with Eq. (3.15).
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4.3.2 Metropolis Monte Carlo

Requirements of Monte Carlo methods

There are many ways to design a Markov chain and thereby a Monte Carlo
method, but in order to give configurations from the correct probability dis-
tribution the method has to fulfill the following two requirements:

1. Detailed balance. The transition probabilities pνν′ and pν′ν (for the
transitions ν → ν ′ and back) should obey

πνpνν′ = πν′pν′ν . (4.3)

2. Ergodicity. It should be possible to access any state in the phase space
through a finite number of Monte Carlo steps.

With these two requirements and symmetric suggestion probabilities,
qνν′ = qν′ν , the probability for the transition to be accepted is according
to Eq. (2.11) ανν′ = min(1, πν′/πν).

Implementation

A sweep through the system with the Metropolis[1] Monte Carlo method
consists of the following:

• Step sequentially over the system.

• For each given site with spin si generate a new trial configuration ν ′

from ν by the change si = −si.

• Calculate the energy change ∆E = Eν′ −Eν .

• Accept the configuration with probability (cf. Eq. (2.11)),

ανν′ = min(e−β∆E , 1),

which follows from πν ∝ e−βEν .
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Critical slowing down

A Monte Carlo simulation performs a random walk in configuration space
through a large number of single-spin flips. As a consequence the successive
configurations are very similar to one another, the correlation times become
large, and the number of truly independent configurations can become con-
siderably reduced which means a poor precision in the calculated averages.

This effect rapidly becomes very severe close to criticality because of the
large correlation length and the very large regions of correlated spins that are
present close to Tc. The process to turn over a large region of spins may be
exceedingly slow and this phenomenon is called critical slowing down. The
following section describes the Swendsen-Wang method which is designed to
eliminate this problem. This is the first Monte Carlo algorithm with non-
local updates and represent an important improvement. A similar method is
the Wolff cluster method, which has become more popular as it is easier to
implement. In recent years one has also managed to device other methods
with non-local Monte Carlo steps.

4.3.3 Cluster update methods

The general idea in the cluster update methods is to construct clusters of
spins pointing in the same direction, and then flip the whole cluster.

Swendsen-Wang method

In the Swendsen-Wang method[2] one creates a number of clusters by two
simple steps3:

1. Create cluster boundaries:

i) Between all spins with opposite orientation (solid lines in Fig. 4.2).

ii) With probability e−2βJ between each nearest neighbor pair with
the same orientation (dashed lines in Fig. 4.2).

3The presentation here is different from what is given in most text books where the
focus is commonly on making clusters by creating links between spins. There is a direct
connection between these two presentations as a cluster boundary implies the absence of
a link and vice versa. I do however prefer the discussion in terms of cluster boundaries
since I feel that it is easier to give them a direct intuitive interpretation.
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2. Identify clusters and flip each cluster with 50% probability. (Note that
the dashed lines that do not form closed paths do not play any role.)

Figure 4.2: Construction of clusters in the Swedensen-Wang method. The
left figure illustrates the creation of bondary segments i) between all spins
with different orientation and ii) between some spins with same orientation.
Note that this is just one out of many possible ways of doing the second step.
The right figure shows the two clusters that the interior part of the system is
split up into, but note that one more cluster boundary (in the random part
“ii)”) above could easily have made the region split up into three clusters
instead.

Note that the probability e−2βJ corresponds to ∆E = 2J which is the
difference in energy for a pair with different and equal orientations, respec-
tively. In this method the question we repeatedly ask is therefore “is it OK
to put a cluster boundary here” whereas in Metropolis MC we ask “is it OK
to flip this spin”?

The Wolff cluster update method

In the Wolff cluster update[3] one instead grows a single cluster which is then
always flipped. It is actually convenient to flip the cluster as it is grown. One
Wolff update step—which in a sense is equivalent to one MC sweep—is as
follows:

• Initialize:

a) Chose a starting position, i, by random.

b) Store the spin direction: S = si.



4.3. MONTE CARLO SIMULATIONS FOR THE ISING MODEL 43

c) Flip the spin: si = −si.

d) Put i in the queue.

• Repeat as long as the queue is non-empty:

– Get a position, i. from the queue.

– Loop over j, the nearest neighbors of i: If sj = S add the spin to
the cluster with probability 1− e−2βJ , i.e.

c) Flip the spin, sj = −sj .
d) Put j in the queue.

The implementation of a queue in C is described in Sec. 7.3.

Acceptance probability and cluster simulations at low tempera-
tures

We have above given a simple argument why it is reasonable to accept cluster
boundaries with probability e−2βJ . That this choice fulfills detailed balance
is furthermore shown in Sec. 4.3.4. It is nevertheless instructive to examine
the low-temperature case where it is clear that the Metropolis single spin
MC and the Wolff cluster MC are very similar.

In Metropolis MC, starting from a system in the ground state with only
spin up, the energy cost for flipping a spin is ∆E = 8J and the fraction
of spin down will be e−8J/T . At T/J = 1 (which must be considered a low
temperature as it is well below Tc/J ≈ 2.269) this probability is e−8 = 0.03%.

Things are quite a bit different when doing Wolff cluster MC since the
clusters at low temperatures always span essentially the whole system, chang-
ing a (mostly) spin-up system to a spin-down system and vice versa. Not
all spins are however added to the cluster. The probability for a given spin
not to be added to the cluster is the same as the probability that there are
four cluster boundaries around that site, and this is something that happens
with probability (e−2J/T )4 = e−8J/T . Since this is the same probability as
found in Metropolis MC this does indeed suggest that e−2J/T is the correct
probability for a cluster boundary.
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4.3.4 The Wolff cluster update method – traditional

presentation

In the Wolff cluster update one grows a cluster that is then flipped as a whole.
Since this method in a single step may cause a big change in a configura-
tion the correlations between successive configurations become considerably
smaller and the problem of critical slowing down is practically eliminated.
Especially for large systems at temperatures close to Tc this means an enor-
mous increase in efficiency.

With a clever method for growing the cluster it turns out that the change
is always accepted, ανν′ = 1. The detailed balance condition may therefore
be expressed in terms of the targeting probability q and becomes

qνν′

qν′ν
=
πν′

πν
.

The method to build the cluster is to start from a random spin and then look
at its neighbors to see if any of them points in the same direction and add
these spins to the cluster with probability Padd. This is done recursively.

A specific growth process

To be specific we describe below the growth of a specific cluster, illustrated
in Fig. 4.3. The spins are here numbered in the order that they are accessed.
One sequence of steps that gives the cluster shown in the left panel (the sites
within the boundary) are the following:

1. Choose the starting spin, spin number 5 and flip the spin. The proba-
bility for this spin to be chosen is P1 = 1/N .

Then consider all the neighbors to spin 5:

2. Add spin 6 to the cluster with probability Padd. In this case the spin
was not accepted. The probability for this to happen is P2 = 1− Padd.

3. Spin 9 is added to the cluster and flipped. The probability for this is
P3 = Padd.

4. Spin 4 is not added, P4 = 1− Padd.

5. Spin 1 is of the wrong sign and cannot be added, P5 = 1.
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.3: Wolff cluster update

After considering all nearest neighbors to spin 5 we consider the neighbors
to spin 9 that do not already belong to the cluster:

6. Spin 10 is added to the cluster and flipped. The probability for this is
P6 = Padd.

7. Spin 13 is not added, P7 = 1− Padd.

8. Spin 8 is of the wrong sign, P8 = 1.

Finally consider the neighbors of spin 10:

9. Spin 11 is of the wrong kind, P9 = 1.

10. Spin 14 is not added to the cluster. P10 = 1− Padd.

11. Finally, spin 6 is getting another chance, but it is not added to the
cluster this time either, P11 = 1− Padd.

The probability for getting precisely this sequence of events is qνν′ =
∏11

i=1 Pi.
The inverse process, of going from ν ′ to ν, is illustrated in the right panel in
Fig. 4.3. To make a list as the above to describe the inverse process, change
all “is of the wrong sign” to “is not added” and vice versa.

Addition probability

We now focus on the domain boundary in the left and the right panels of
Fig. 4.3. Because the two panels differ only in the sign of the spins within the
cluster it follows that the boundary segments that separate aligned spins in
the one panel separate anti-aligned spins in the other panel. We denote the
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number of segments that separate identical spins in configurations ν and ν ′

by n and n′, respectively. It is then possible to express the energies of these
configurations in terms of a common background term plus the contribution
from the boundary as,

Eν = Ebg − nJ + n′J,

Eν′ = Ebg + nJ − n′J,

which means that the energy difference becomes

Eν′ −Eν = 2(n− n′)J. (4.4)

It turns out that it is also possible to express the transition probabilities in
terms of n and n′. Denoting the size of the cluster by s (in our example s = 3)
the number of spins added to the original spin is s − 1 and the transition
probabilities become

qνν′ =
1

N
(Padd)

s−1(1− Padd)
n,

qν′ν =
1

N
(Padd)

s−1(1− Padd)
n′

.

We then find
qνν′

qν′ν
= (1− Padd)

(n−n′)

and from the detailed balance condition, Eq. (4.3), together with Eq. (4.4)
for the energy difference we find

(1− Padd)
(n−n′) = e−2β(n−n′)J = (e−2βJ)(n−n′),

and it is clear that this is fulfilled if the addition probability is chosen as

Padd = 1− e−2βJ .

What we have examined above is not really the probability of going from
ν to ν ′, and the inverse process, but rather the probability of growing the
cluster that takes us between the two states in a specific way. The full pνν′
should have contributions from each of several possible ways to grow the
cluster. However, since we have shown that it is possible to fulfill detailed
balance for each specific way of growing the cluster, it follows immediately
that detailed balance will hold for the total quantities pνν′ and pν′ν .
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4.3.5 Improved estimators

Improved estimators may be understood on the basis of the Swendsen-Wang
cluster update method, where the whole system is split into clusters and each
cluster is flipped with 50% probability.

From this follows that one can generate a large number of different con-
figurations, this number is equal to 2Nc , where Nc is the number of clus-
ters, and the size of cluster number c is nc. Each such configuration is
then specified by the signs of all the clusters, tc, for c = 1, . . . Nc, and the
magnetization becomes M =

∑

c tcnc. For each such configuration we have
M2 =

∑

c

∑

c′ tctc′ncnc′. The average of M2 for all these configurations be-
comes

M2 =
1

2Nc

∑

t1=±1

· · ·
∑

tNc=±1





∑

c

∑

c′ 6=c

tctc′ncnc′ +
∑

c

t2cn
2
c





=
∑

c

n2
c .

Note that the first term inside square brackets vanishes due to the sum over
the t-variables.

Going instead to the Wolff algorithm the probability to find cluster c
depends on its size and we get pc = nc/N . The average cluster size generated
with the Wolff algorithm becomes

〈nc〉W =

〈

∑

c

pcnc

〉

=
1

N
〈
∑

c

n2
c〉,

and we therefore find

m2 =
1

N2

〈

∑

c

n2
c

〉

=
1

N
〈nc〉W .

The same idea may also be used to determine the spin correlation function
from the properties of the Wolff clusters. This is best done with FFT analyses
of the clusters as discussed in Sec. 7.4.

4.4 Exact solutions

The behavior and complexity of the Ising model is highly dependent on the
dimensionality. In one dimension the model only orders at T = 0 but for
d ≥ 2 there is a transition at a finite Tc where the order parameter vanishes
as M ∼ (Tc − T )β.
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One dimension

It is a simple exercise to solve the 1D Ising model exactly, i.e. to calculate
the partition function in terms of elementary functions. The result is

Z1D = (2 coshβJ)N .

Two dimensions – Onsager’s solution

The solution of the two-dimensional Ising model is a very much more de-
manding problem. The model was solved by the norwegian physicist Lars
Onsager in 1944. This was an impressing tour de force which by some is
considered as one of the greatest scientific achievements of the 20th century.
Because of the combination of a non-trivial behavior and a known exact so-
lution, the 2D Ising model is often used as a testing ground for various kinds
of methods for MC simulations. Onsager found among other things that the
free energy is non-analytic at

Tc =
2

ln(1 +
√
2)

(4.5)

such that the heat capacity (which is ∝ ∂2F/∂β2) diverges logarithmically,

C ∼ − ln |T − Tc|.

Three dimensions – an unsolved problem

The three-dimensional Ising model is still an unsolved problem which contin-
ues to attract both mathematicians and physicists. Both Tc and the critical
exponents are however known with rather high precision from Monte Carlo
simulations and analytic calculations.

4.5 Behavior at a critical point

A consequence of the non-analytic free energy is that various quantities di-
verge or vanish at the critical temperature. The behavior is described by the
critical exponents α, β, γ, and δ. The main reason for the great interest in
these exponents is because they are universal, which means that their values
are the same for a number of different models that have certain properties in
common. Such a class of models is said to constitute a universality class.
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4.5.1 The heat capacity

The exponent α governs the behavior of the specific heat. In a typical first
order transition there is a jump in the energy at the transition and this jump
gives rise to a δ-function like peak in the heat capacity C/N = d 〈e〉 /dT ,
where 〈e〉 = 〈E〉 /N . In continuous phase transitions on the other hand the
specific heat often diverges like

C ∼ |T − Tc|−α.

Since4

lim
α→0

1

α
(x−α − 1) = − ln x,

the logarithmic behavior of the 2D Ising model is taken to imply α = 0.
In simulations the heat capacity is usually determined from the fluctua-

tions in the energy, c.f. Eq. (3.6)

4.5.2 The magnetization

The ensemble average of the magnetization is

〈M〉 = 1

Z

∑

ν

PνMν , 〈m〉 = 〈M〉
N

,

where
Mν =

∑

i

si.

Note that we make use of upper case letters for extensive quantities like the
total magnetization whereas the magnetization density is denoted by a lower
case, 〈m〉.

The magnetization is however a difficult quantity to handle both in the
simulations and in analytical calculations. The reason is that the expectation
value is always M = 0 independent of temperature because of the up-down
symmetry of the model which means that are exactly as many states with
Mν > 0 as with Mν < 0. It is nevertheless possible to define a quantity that
behaves as an order parameter by considering applying a small magnetic field
and taking the limit h→ 0 after L→ ∞,

〈m〉 = lim
h→0

lim
L→∞

1

Z

∑

ν

mνe
−βEν(h). (4.6)

4This follows from x−α = e−α ln x ≈ 1− α lnx.
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Both in simulations and in real ferromagnets one does however find a non-
vanishing magnetization below Tc. The reason for this is that the system has
become stuck in one part of the phase space and actually is non-ergodic. The
fact that nature (as well as simulations) finds a solution to a problem with a
symmetry that is different from the symmetry present in the problem itself,
is called spontaneous symmetry breaking.

4.5.3 Critical exponents related to the magnetization

With the critical point defined by T = Tc and h = 0 it is clear that it is
possible to approach the critical point in two directions, either by changing
the temperature or by changing the applied magnetic field. The behavior
along these two directions in parameter space define two different critical
exponents.

• The exponent β is defined from the vanishing of the magnetization as
Tc is approached from below,

〈m〉 ∼ (Tc − T )β.

• The response of the magnetization to the applied field is governed by
the exponent δ,

〈m〉 ∼ h1/δ, T = Tc.

In this case the up-down symmetry is broken and there is no difficulty
in the definition of the magnetization.

From the exponents β and δ it is possible to determine all the other ex-
ponents. Table 4.1 expresses these exponents in terms of yt and yh which
describe the rescaling of the free energy density in the thermal and field
directions, respectively. More on this in Sec. 4.8.1.

4.5.4 Susceptibility

The susceptibility is the response of the system to a weak applied magnetic
field and is defined as

χ =
1

N

∂ 〈M〉
∂h

∣

∣

∣

∣

∣

h=0

.
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The susceptibility may actually be written in terms of the fluctuations in the
magnetization. From Eq. (4.2) we have

〈M〉 = 1

Z

∑

ν

Mνe
−βEν =

1

Z

∂Z

∂(βh)
=
∂ lnZ

∂(βh)
,

and we obtain

χ =
β

N

∂2 lnZ

∂(βh)2

=
β

N

(〈

M2
〉

− 〈M〉2
)

.

Below Tc we again get problems with determining 〈M〉 but in the high-
temperature phase we may put 〈M〉 = 0 and obtain

χ = βN
〈

m2
〉

.

The exponent γ is defined from the divergence of the susceptibility as Tc is
approached from either side,

χ ∼ |T − Tc|−γ.

definition d = 2 d = 3 With d, yt, and yh
α C ∼ |T − Tc|−α 0 0.10940 2− d/yt
β 〈m〉 ∼ (Tc − T )β 1/8 0.3267 (d− yh)/yt
γ χ ∼ |T − Tc|−γ 7/4 1.2372 (2yh − d)/yt
δ 〈m〉 ∼ h1/δ, T = Tc 15 4.787 yh/(d− yh)
η g(k) ∼ 1/k2−η, T = Tc 1/4 0.0368 d+ 2− 2yh
ν ξ ∼ |T − Tc|−ν 1 0.630199 1/yt

kBTc/J 2.26919 4.51153

Table 4.1: Critical properties of the Ising model in two and three dimensions.
The exponents are universal quantities whereas the critical temperatures are
for the usual square and cubic lattices, respectively.
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4.5.5 The correlation function

The Ising model may also be described in terms of the correlation function
g(r). One may then extract two exponents: one that describes the behavior
at Tc and another that describes the approach to Tc. Because of the relations
between the critical exponents these two together completely determine the
critical behavior of the model.

We define the correlation function

g(r) = 〈srs0〉 ,

which has the following behaviour below, at, and above Tc,

g(r) ∼











g∞ + Ce−r/ξ, T < Tc,
r−(d−2+η), T = Tc,
Ce−r/ξ, T > Tc.

This defines the critical exponent η from the decay of the correlations at Tc.
The Fourier transform of the correlation function is also of interest. We have

g(k) =
∑

r

g(r)e−ik·r,

and the behavior at Tc is given by

g(k) ∼ 1

k2−η
.

The other exponent that may be extracted from the correlation function
is the correlation length exponent ν from the divergence of ξ,

ξ ∼ |T − Tc|−ν .

4.6 Mean field theory

One of the simplest methods to examine a model in statistical physics is
to use mean field theory. The basic approximation is that the effect on a
certain particle of the interactions with the other particles may be treated
by introducing a field, and that this field may be calculated self-consistently.
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In mean field theory of the Ising model one focuses on the effect on spin
si of the surrounding spins sj where j are the z nearest neighbors. The part
of the Hamiltonian which is related to si is

H(si) = −J
∑

j

sisj = −hisi,

where hi = J
∑

j sj. The expectation value of si is then

〈si〉 =
eβhi − e−βhi

eβhi + e−βhi
= tanh(βhi).

Up to this point everything is exact, but we now assume that we may consider
the average field 〈hi〉 and that this may be calculated from 〈sj〉 = 〈si〉 = m.
This gives

m = tanh(βJzm), (4.7)

which is shown graphically for two different values of βJz in Fig. 4.4. From

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

tanh(1.4m)

tanh(0.8m)

m

Figure 4.4: Graphic solutions to Eq. (4.7).

the figure we may conclude that Eq. (4.7) only has the trivial solution for
βJz = 0.8 but also a non-trivial solution for βJz = 1.4. It is clear that the
non-trivial solution will exist only if

d tanh(βJzm)

dm

∣

∣

∣

∣

∣

m=0

> 1.

From the Taylor expansion tanh x ≈ x−x3/3 we conclude that this condition
gives βcJz = 1, and the critical temperature

kBTc = Jz.
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4.6.1 The exponent β

To avoid confusion we will in the present subsection use β̃ for the inverse
temperature. For β̃ close to β̃c, the definition of the exponent β is

M ∼ (β̃ − β̃c)
β .

From Eq. (4.7) together with the Taylor expansion and β̃cJz = 1 we get

β̃cJzm = β̃Jzm− 1

3
(β̃Jzm)3.

By rearranging and dividing by m we get

(β̃ − β̃c) ∼ m2,

which gives

m ∼ (β̃ − β̃c)
1/2,

and we find the exponent β = 1/2 in the mean field approximation.

4.6.2 Dimensionality and the MF approximation

With a knowledge of the true behavior it is appropriate to return to the
approximative methods considered before, especially the mean field approx-
imation.

Since the dimensionality of the system never plays any role in the mean
field approximation5 the character of the transition is independent of dimen-
sionality. Table 4.2 shows a comparison between the predictions from the
MF approximation and the true behavior. It is clear that this approximation
is terribly bad at low dimensions but works reasonable well in 3D.

4.7 Energy-entropy argument

As mentioned above the behavior of the Ising model depends strongly on
the dimensionality but that is not seen in the mean field approximation. A

5The dimensionality does enter through the coordination number, but that is equivalent
with a rescaling of the coupling constant or (equivalently) a change in temperature scale
only. It doesn’t give any qualitative difference.
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d kBTc/J kBT
MF
c /J Tc/T

MF
c β

1 0 2 0 –
2 2.269 4 0.57 0.125
3 4.511 6 0.75 0.3267

Table 4.2: Comparison between the predictions from mean field theory and
the true behavior.

simple way to judge about the existence of a phase transition, which takes
the dimensionality into account, is through an energy-entropy argument.

The state with lowest energy is an ordered state and that will dominate
the behavior at zero temperature. There is however a huge number of disor-
dered states and the idea behind the energy-entropy argument is to compare
the ordered ground state with the different disordered states to decide which
is more probable.

We now consider Ω0 states with energy E0 and Ω1 states with energy E1

and we want to compare the two probabilities

P0 ∝ Ω0e
−βE0 ,

P1 ∝ Ω1e
−βE1 .

To phrase this in terms of entropy and energy we recall

S = kB ln Ω ⇒ βkBTS = kB ln Ω ⇒ Ω = eβTS,

which means that we may write

P ∝ Ωe−βE = e−β(E−TS) = e−βF ,

where F = E−TS is the free energy. This implies that the condition P1 > P0

corresponds to F1 < F0, and with ∆E = E1 −E0 and ∆S = S1 −S0 we may
say that disorder wins if ∆F < 0 which is the same as T∆S > ∆E.

4.7.1 1D Ising model

We now apply the energy-entropy argument to a 1D Ising chain with L+ 1
spins in the limit L → ∞. The model has two different ground states with
either si = 1 for all i or si = −1, i.e. Ω0 = 2. The ground state energy
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is E0 = −JL. There is then also Ω1 = 2L different disordered states with
energy E1 = E0 + 2J , and we find that the difference in free energy is

∆F = ∆E − T∆S = 2J − kBT lnL,

which means that ∆F < 0—the disorder wins—for all T > 0. The conclusion
is that the system disorders for all T > 0 and that there is only a trivial phase
transition at Tc = 0.

4.7.2 2D Ising model

When considering the 2D model it is more appropriate to reformulate the
order-disorder question slightly. The question is instead whether the ground
state is stable against the formation of large domains. If there are no large
domains the system will be in the ordered phase whereas the presence of such
domains means a disordered system.

We then need to determine both energy and entropy for a domain bound-
ary with perimeter p. For the energy we immediately get

E(p) = 2Jp.

It is more tricky to estimate the number of different domain boundaries with
perimeter p. Note first that this is a self-avoiding walk (see Sec. 5.3.2) but of
a somewhat special kind since it has to close onto itself. As an upper bound
we take the number of non-backtracking walks which means Ω(p) < 3p, and
as a estimated lower bound we take Ω(p) > 2p. Taken together this becomes

Ω(p) = cp, 2 < c < 3,

and we may write an expression for the free energy of a domain with peri-
menter p as

∆F = 2Jp− Tp ln c.

This means that the change in free energy turns negative for T > Tc where

Tc =
2J

ln c
⇒ 1.8J < Tc < 2.9J.
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4.8 Universality, RG theory, and scaling

A remarkable property of the phenomena we have discussed here is the fact
that certain properties are insensitive to the details of the system. This is
the case for the exponents which are kinds of fingerprints of the “universality
class” that characterizes the transition. To e.g. change the kind of lattice from
square to hexagonal or triangular doesn’t affect these exponents. Similarly,
adding couplings along the diagonals or even to sites several lattice spacings
away, does not change the universality class. It is only quantities like the
critical temperature that will be different for these different cases.

The reason for the existence of universality classes is that the details of
the system start to become increasingly less important when it is the big
clusters that start to dominate the system. What governs the approach to
Tc is how the clusters merge, and on the larger length scales this looks the
same independent of several kinds of details of the system. With this way of
thinking it may also be concluded that the change of dimensionality of the
system also should lead to a different universality class.

The concept of universality classes is actually not only important for how
we think about various kinds of transitions but also for the kind of simulations
we choose to do. The computationally most efficient method is to consider
the simplest possible model that belongs to the same universality class as the
problem under consideration. Even in cases where we are interested in the
non-universal quantities like Tc it could be wise to first examine the simplest
model expected to be in the same universality class, and only as a second
step attack the more realistic model.

4.8.1 Renormalization Group theory

As discussed above the crucial property of systems at the critical point is the
absence of a characteristic length scale. This is e.g. seen in the correlation
function which in the Ising model is g(r) ∼ r−(d−2+η) at Tc, see Sec. 4.5.5.
The absence of a characteristic scale implies that fluctuations of all sizes are
important and this is the main reason why the critical phenomena for a long
time defied solution by analytical techniques.

Renormalization Group theory which is usually attributed to K. G. Wil-
son was the result of a process in the end of the 60’s where several people
(including e.g. Fisher and Kadanoff) made significant contributions. One
very impressive part of the RG theory is the possibility to calculate critical
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exponents. This is however a technical and highly specialized art which will
not concern us here. From our perspective the importance of RG theory is
rather that it gives a way of thinking about critical phenomena and gives a
theoretical motivation for the scaling assumptions.

The idea behind Renormalization Group theory is to consider the effect
of a change of scale to the system. To make this more concrete one may
consider looking at a system through a microscope with the possibility to
change the magnification. The absence of a characteristic length at Tc means
that the configurations right at Tc would look the same independent of the
magnification. In contrast, at temperatures above or below Tc we will find
that an increase of the length scale will have the effect to make the configura-
tions look as if they were farther away from Tc. Figure 4.5 is a simple sketch

a) b) c) d)

Tc

b=2 b=2

Figure 4.5: Sketch of typical configurations below and above Tc. The configu-
ration below Tc have an ordered background and the fluctuations are regions
with opposite spins. The fluctuations are of course of different size and shape
but have here for simplicity been illustrated by circular regions with a size
proportional to the correlation length. The configurations above Tc have a
disordered background and the fluctuations are here ordered regions where
(most of) the spins either point up or down. The figures below the temper-
ature axis show the effect of a change of scale with the scale factor b = 2.
These configurations look much the same as the configurations farther away
from Tc.

of typical configurations at four temperatures around Tc. Panel a) and b)
are for T < Tc. In that case the system has a non-vanishing magnetization
and the main part of the system has spins pointing up. There is then some
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regions with spins of the opposite direction and the figure shows the typical
size of these islands which is directly related to the correlation length. For
T > Tc, panels c) and d), the background of the system is disordered and
the fluctuations are now ordered regions with spins pointing either upwards
or downwards. Far above Tc these regions are small but as Tc is approached
the typical size of these regions grows larger.

Consider a system at the temperature T . Introduce t = T/Tc − 1. The
effect of a change of scale with a factor b may be considered as a change of
temperature with tb = s(b)t. The unknown function s(b) may be determined
from the fact that a single change of scale with the factor b1b2 is the same as
two consecutive scale changes with the factors b1 and b2. We therefore have

s(b1b2) = s(b1)s(b2),

which holds with s(b) = by for arbitrary y since (b1b2)
y = by1b

y
2.

The above discussion may illustrate the effect of a rescaling but is very
different from the usual formulation of the Renormalization Group approach
where one doesn’t consider the changes to individual configurations, but
rather how the parameters in the Hamiltonian (e.g. the “coupling”K = J/T )
change with the scale factor b. The effect of the scale factor is then that bd

spins are collected into a single “block spin” where the coupling between these
block spins is given byK ′. The critical point is associated withK ′ = K = K∗

and for K away from K∗ the effect of the renormalization is that K ′ moves
away from K∗. The “fixed point” K∗ associated with a critical point is
therefore said to be an “unstable” fixed point.

4.8.2 The scaling behavior of the free energy

Consider a system of size N = Ld and a change of scale to L′ = L/b and
N ′ = N/bd. The total free energy should be the same regardless of the scale
factor6, F (t, L) = F (t′, L′). For the free energy density we may write

f(t)Ld = f(t′)L′d,

which means

f(t) =
L′d

Ld
f(t′),

6This is true for the part of the free energy that is relevant for the phase transition,
the singular part of the free energy.
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or
f(t) = b−df(tbyt).

We may make this slightly more general by also including the magnetic field
h,

f(t, h) = b−df(tbyt , hbyh).

4.8.3 Relation to critical exponents

The scaling relation for the free energy density may now be used to derive
the expressions in Table 4.1 for the the critical exponents in terms of d, yt,
and yh. Consider the magnetization,

m(t, h) ∼ ∂f

∂h
= b−d+yhfh(tb

yt , hbyh),

where fh is another function, the derivative of f with respect to its second
argument.

So far we have considered b to be a fixed constant but the relation above
may also be used in a somewhat different way. One may e.g. choose tbyt = −1,
which gives b = (−t)−1/yt . For h = 0 we then find

m(t, 0) = (−t)(d−yh)/ytfh(−1, 0),

and since fh(−1, 0) is a constant and m ∼ (−t)β , we may identify β =
(d− yh)/yt. The other relations in Table 4.1 may be derived with the same
techniques, and from these expressions follow several relations between the
exponents.

4.8.4 Finite size scaling

The finite size scaling relations are derived in a similar way. The critial
behavior, i.e. the divergence of ξ, is only seen at t = 0 (i.e. T = Tc), h = 0,
and 1/L = 0, and we therefore include 1/L as an additional argument to
the free energy. According to the same pattern as the other quantities the
argument on the right hand side would be byL/L, but since a change of scale
with a factor b gives the linear size L/b it follows that yL = 1 and the scaling
assumption becomes

f(t, h, 1/L) = b−df(tbyt , hbyh , b/L).
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The finite size scaling relation for the magnetization now becomes

m(t, h, 1/L) = b−d+yhfh(tb
yt , hbyh , b/L),

and for h = 0 we may choose b = L which gives

m(t, 0, 1/L) = L−d+yhfh(tL
yt , 0, 1).

With the above derived relation for β together with yt = 1/ν we finally find
(where we change the last argument on the left side from 1/L to L),

m(t, L) = L−β/ν f̃h(tL
1/ν).

This suggests that plotting mLβ/ν versus (T/Tc − 1)L1/ν should make the
points collapse on a single curve, described by the (unknown) function f̃h(x).

As discussed above, the up-down symmetry of the model means that
m = 0 at all temperatures and the way out is to define the magnetization
in the limit h → 0, which is to be taken after L → ∞. This procedure is of
course not relevant for the finite system sizes to be used in finite size scaling,
and the way out is to either take the absolute value,

m =
1

N
〈|M |〉 ,

or to examine the magnetization squared,

m2 =
1

N2

〈

M2
〉

.

The latter quantity has the scaling behavior

m2(t, L) = L−2β/νf2(tL
1/ν). (4.8)

4.8.5 Binder’s cumulant

When the critical behavior is unknown there are three unknown quantities
in Eq. (4.8), Tc, β, and ν. It is often difficult to simultaneously adjust all
these three parameters to get the best possible fit. A way out is to use a
different quantity that has a known scaling dimension, and thereby a known
behavior at Tc. One such quantity is Binder’s cumulant which was originally
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Figure 4.6: Binder’s cumulant obtained from the 3D XY model. The first
panel illustrates the crossing of the cumulant Q for different L at a single
temperature which is identified as Tc. The second panel shows the collapse
obtained with Tc = 2.2018 and ν = 0.672. A closer look would reveal that
the crossing points for data with L and 2L shift to higher temperatures for
larger L, this is the usual behavior and is called “corrections to scaling”. This
adds some complexity to high-precision determinations of the exponents.
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introduced as UL = 1 − 〈m4〉 /(3 〈m2〉2). A simpler, closely related, formula
is

Q =
〈m2〉2

〈m4〉 . (4.9)

The scaling behavior of this quantity is simply,

Q(t, L) = fQ(tL
1/ν), (4.10)

where fQ(x) is a scaling function. To determine Tc one may plot QL(T ) for
a number of different sizes L. The common intersection point is the critical
temperature. With this value of Tc it is then possible to adjust ν such that
the data for the different sizes collapse on top of one another. This kind of
analysis of the 3D XY model is shown in Fig. 4.6.

4.9 More on analytical techniques

4.9.1 High temperature expansion

It is possible to examine the Ising model by two different kinds of expansions.
In the following sections we will make use of the dimensionless coupling
K = J/kBT . In the high-temperature expansion this (or rather tanhK) will
be used as the small parameter.

The starting point is the partition function

Z =
∑

ν

e−βEν =
∑

ν

e
K
∑

〈ij〉
sisj =

∑

ν

∏

〈ij〉

eKsisj .

From

e±K =
eK + e−K

2
± eK − e−K

2
,

we get
eKsisj = coshK + sisj sinhK,

and the partition function becomes

ZH(K) =
∑

ν

∏

〈ij〉

(coshK + sisj sinhK)

= (coshK)2N
∑

ν

∏

〈ij〉

(1 + sisj tanhK).
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The product is now a large number of different terms with various powers of
tanhK, e.g.

1 + s1s2 tanhK + s3s4 tanhK + . . .+ s1s2s3s4 tanh
2K + . . .

It is however easy to show that most of these terms do not contribute to the
partition function since the sum over configurations means summing over
si = ±1. We e.g. have

∑

s1=±1

∑

s2=±1

s1s2 tanhK = 0.

The only terms that contribute are those where each si appears an even
number (0, 2, or 4) of times. If we assume that sites 1 through 4 are located
as shown here,

r

1
r

2

r

4
r

3

then the term below will give a non-vanishing contribution to the partition
function,

(s1s2)(s2s3)(s3s4)(s4s1) tanh
4K.

It turns out that all the non-vanishing terms may be represented in terms of
a closed path (or a set of closed paths) on the lattice. The terms up to sixth
order in tanhK may be represented by the following closed paths

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

and since each path may be put on N = L×L different places on the lattice
the contributions to the partition functions become

ZH = (2 cosh2K)N
[

1 +N tanh4K + 2N tanh6K + . . .
]

. (4.11)

It is of course possible to consider further terms in this expansion but for our
purposes the first few will be enough.
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4.9.2 Low temperature expansion

The ground state corresponds to all the spins pointing in the same direction,
+1 or −1 with energy −2NJ . At zero temperature these configurations are
the only relevant one, but at finite temperatures the configurations with one
or a few spins in the opposite direction will contribute as well. Note that
a single flip will give N − 4 links with sisj = 1 and 4 links with sisj = −1
which gives the energy −(2N − 8)J . A pictorial representation of such a
configuration with the mis-aligned spin and the links with energy = +J is
shown here:

❡

The single misaligned spin may be any of the N spins in the system. The
contribution to the partition function therefore becomes

ZL = 2
[

e2KN +Ne2K(N−4) + . . .
]

= 2e2KN
[

1 +N(e−2K)4 + . . .
]

,

where the prefactor of 2 comes from the up-down symmetry in the problem.
The next terms in ZL come from configurations with two misaligned spins

that are nearest neighbors; the energy is −(2N − 12)J .

❡ ❡ ❡

❡

❡

Including these terms we find

ZL(K
∗) = 2e2K

∗N
[

1 +N(e−2K∗

)4 + 2N(e−2K∗

)6 + . . .
]

, (4.12)

where K∗ is introduced instead of K for the coupling in the low-temperature
region.

4.9.3 Duality relation

Note that the first few terms of the high- and the low-temperature expansions
are of the same form. The only difference is that the expansion parameter
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is e−2K∗
in the low temperature expansion and tanhK in the high tempera-

ture expansion. This is not just accidental but rather holds for all terms to
arbitrary order. To see this we will need the concept of a dual lattice.

The figure below illustrates the dual lattice for the simple 2D square case.
The filled circles are the ordinary lattice where the spins are located. The
open circles are the points of the dual lattice. Note that the dual of a square
lattice is itself a square lattice. (What is the dual lattice of a triangular
lattice?)

r r r r r

r r r r r

r r r r r

❡ ❡ ❡ ❡

❡ ❡ ❡ ❡

The correspondence between the geometrical objects of the high- and low-
temperature expansions may now be made more precise. Putting two such
objects on top of one another gives,

r

r

r

r

r

r

❡ ❡

and this demonstrates that each closed path that may be formed on the
original lattice (that describes a non-vanishing term in the high-temperature
expansion) may be transformed into a set of solid lines (links) on the dual
lattice that characterizes a term in the low-temperature expansion of the
Ising model on the dual lattice.

The implication is that the Ising model with coupling K on the original
lattice is closely related to an Ising model with coupling K∗ where the two
coupling constants are related to one another through

tanhK = e−2K∗

, (4.13)

and we find K∗ = −(1/2) ln tanhK. This relation gives a K∗ of the low-
temperature region from a K that is from the high-temperature region and
as K increases K∗ will decrease. There is then a special point where K∗ =
K and it seems reasonable to associate this with the phase transition. To
determine that coupling we rewrite the above equation in a more symmetric
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form. From Eq. (4.13) we get

e2K
∗ − e−2K∗

=
eK + e−K

eK − e−K
− eK − e−K

eK + e−K
=

4

e2K − e−2K
,

which may be rewritten as

sinh 2K sinh 2K∗ = 1.

To solve for Kc = K = K∗ we see that sinh 2Kc = 1 gives

e2Kc − e−2Kc = 2 ⇒ e4Kc − 2e2Kc = 1,

which becomes e2Kc = 1 +
√
2 and we find

Kc =
ln(1 +

√
2)

2
,

which is equivalent to the expression for Tc in Eq. (4.5).

4.10 The lattice gas

We have so far discussed the Ising model in terms appropriate to a magnet
with terms as magnetisation, susceptibility, and so forth. It is however worth
pointing out that the model may be of relevance to other seemingly unrelated
systems. By a simple change of variables the Ising model may be changed
into a lattice gas model where the variables are ni = 0, 1, corresponding to
empty or occupied sites, and the attraction of molecules at short distances
is captured by assigning the energy −ǫ to each nearest neigbor pair,

H = −ǫ
∑

〈ij〉

ninj.

This model is defined in the grand canonical ensemble where the number of
particles fluctuates and is controlled by the chemical potential µ. The grand
sum is then

Ξ =
∑

ν

e−βEν+βµNν ,

where Nν =
∑

i ni.
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4.10.1 Relation between the Ising model and the lat-

tice gas

It is not difficult to derive the relation between the lattice gas and the Ising
model. (Since N in the grand canonical ensemble by convention is the number
of particles, we use Nc = Ld for the number of cells.) The starting point is
the relation between the occupancy ni and the spin variable si:

ni =
(

si + 1

2

)

.

Substituting this into the grand sum for the lattice gas we get

Ξ =
∑

ν

exp



βǫ
zNc/2
∑

〈ij〉

(

si + 1

2

)(

sj + 1

2

)

+ βµ
∑

i

(

si + 1

2

)



 ,

and for the expression within brackets we get

βǫ

4

∑

〈ij〉

sisj +
βǫz

4

∑

i

si +
βǫzNc

8
+
βµ

2

∑

i

si +
βµNc

2

=
βǫ

4

∑

〈ij〉

sisj + β
(

ǫz

4
+
µ

2

)

∑

i

si + β
(

ǫz

8
+
µ

2

)

Nc.

A comparison with the Ising model gives

J ⇔ ǫ/4

h ⇔ ǫz

4
+
µ

2

4.11 A few words about all the other models

Since the 2D Ising model is the simplest model in statistical physics with a
critical behavior it is a common starting point for studies of critical phenom-
ena. The purpose with this section is to stress the fact that this is not the
complete story of critical phenomena. It is rather only the first page . There
is a vast number of different models that differ in many aspects. Starting from
the Ising model (a spin model with a one-component spin) we can imagine a
few different changes that all give rise to models with (usually) qualitatively
different behavior. (Other models will give additional possibilities.)
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1. Change the number of spin components. Two-component spins give
the XY model which has been used to describe superconductivity. The
phase transition in the 2D XY model is a key phenomenon behind the
Nobel prize for Physics 2016 and has also been studied a lot here at
the Physics department.

2. Three spin components gives the Heisenberg model.

3. Introduce frustration, i.e. put a negative coupling constant at some
links such that it becomes impossible to satisfy all couplings around an
elementary square simultaneously.

4. Put disorder into the system. That can be done through couplings with
random strength, e.g. uniformly distributed between −J and J , or by
introducing a random field.

The changes listed above are all sufficient for changing the universality
class. It is also possible to give examples of more trivial changes that do not
affect the universality class (i.e. the critical exponents) though they do give
different values of Tc. Such examples are

• Changing from a square lattice to a triangular lattice.

• Changing the interaction from only nearest neighbors to also include
interactions to next nearest neighbors.

There are many other kinds of models, beside the spin models, in statis-
tical physics. One example is the solid-on-solid model where each point i has
an associated height hi, and the Hamiltonian is

H = J
∑

〈ij〉

(hi − hj)
2,

yet another one is a model with interacting loops in three dimensions. One
of many fascinating thing about statistical physics is that there are relations
between many of these seemingly unrelated models.

The “spins” considered above are classical spins but the behavior (of
course) becomes radically different with quantum spins. Such models may
be studied with quantum Monte Carlo—a big field with a large number of
interesting, and often rather complicated, algoritms.
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4.12 Superconductivity and the XY model

The phenomenon of superconductivity was discovered in 1911 by H. Kammer-
lingh-Onnes through measurements on mercury at very low temperatures. He
found that the electrical resistivity appeared to vanish below 4.2 K. Super-
conductivity has since then been found in many different materials, both
elements and alloys, and it has been shown that the resitivity in a super-
conductor actually is identically zero. This has been done in experiments
with a current in a superconducting ring; the current has been observed to
flow without masureable decrease for more than a year. A hallmark of a
superconductor is therefore perfect conductivity.

One successful approach to superconductivity is due to F. and H. London
who introduced the “number density” of superconducting electrons and two
equations that contain the basic electrodynamic properties. These equations
give at hand that an external magnetic field induces currents that make the
magnetic field vanish in the interiour of the superconductor—the Meissner
effect. This is the second important characteristics of the superconducting
state.

The microscopic mechanism of superconductivity was found 1957—nearly
fifty years after the discovery of the phenomenon—by Bardeen, Cooper, and
Schrieffer. They got the 1972 year’s Nobel prize ”for their jointly developed
theory of superconductivity, usually called the BCS-theory”. The essence of
this theory is that the electrons are bound together in pairs—Cooper pairs—
by a weak force caused by phonons, and that these paired electrons are the
superconducting charge carriers.

4.12.1 Ginzburg-Landau theory of superconductivity

In spite of the known microscopic mechanism of superconductivity much work
is still based on the phenomenological Ginzburg-Landau theory of supercon-
ductivity. The first assumption in the GL theory is that a superconductor
at each point is characterized by a complex “order parameter” ψ(r),

ψ(r) = |ψ(r)|eiθ(r),

where both magnitude and phase are important. The magnitude is directly
related to the density of superconducting electrons,

|ψ(r)|2 = 1

2
ns.
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The second assumption is that the free energy may be written in powers of
ψ and ∇ψ,

F =
∫

dr

[

B2

8π
+

h̄2

2m∗

∣

∣

∣

∣

(

∇− ie∗

h̄c
A
)

ψ
∣

∣

∣

∣

2

+ α(T )|ψ|2 + β

2
|ψ|4

]

,

where m∗ = 2m and e∗ = 2e are the mass and charge of a Cooper pair, and
B = ∇×A is the magnetic induction. The function α(T ) in the third term
is equal to zero at Tc0, the mean-field temperature, and negative at lower
temperatures. This function is often approximated by the first term in an
expansion, α(T ) = α′(T − Tc0).

The equilibrium value of |ψ| is determined by the condition that the free
energy is a minimum. In the absence of external fields this becomes

|ψ|2 = −α(T )
β

.

The requirement that the free energy is a minimum with respect to small
variations of the vector potential δA gives an expression for ∇×B which may
be identified with Maxwell’s equation ∇ × B = (4π/c)j and the expression
for the current density becomes

j = −ie
∗h̄

2m∗
(ψ∗∇ψ − ψ∇ψ∗)− (e∗)2

m∗c
|ψ|2A =

e∗

m∗
|ψ|2

(

h̄∇θ − e∗

c
A
)

,

where ψ∗ is the complex conjugate. Note the similarity between GL theory
and common quantum mechanics.

4.12.2 The XY model and superconductivity

We will now show the steps to go from the GL theory to the XY model:

• Neglect the magnetic energies.

• Assume that the spatial variation in |ψ| is unimportant. This means
that θ(r) is the only remaining degree of freedom.

• Discretize space such that θ(r) is only defined at certain lattice points
ri. Use the notation θi.
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• Change the interaction potential,

|∇ψ(r)|2 −→ −J cos(θi − θj),

where i and j are nearest neighbors.

The resulting Hamiltonian is

HXY = −J
∑

〈ij〉

cos(θi − θj).

It is possible to include the effect of an applied field, which is relevant for
Type-II superconductors where the flux can penetrate the superconductor
without destroying the superconducting state, by keeping the vector poten-
tial. The Hamiltonian then becomes

HXY = −J
∑

〈ij〉

cos(θi − θj − Aij),

where the variables Aij can be chosen such that ∇ × A—the sum of Aij

around a square—becomes non-zero.

4.12.3 Properties of the 2D XY model

Spin correlation function

A property of the XY model, which makes it behave very differently from
the Ising model, is that the spin directions of a configuration may change
slowly and gradually as one moves in space. Such fluctuations are called spin
waves. At low temperatures there are never any big angular differences and
we can approximate − cos(θi−θj) ≈ (θi−θj)2/2. The effect of the spin waves
may then be calculated analytically and one finds

g(r) = eTG(r)/J ∼ r−T/2πJ ,

where G(r) is “the lattice Green’s function in two dimensions”, and the final
result follows from 2πG(r) ≈ − ln |r|. Since g(r) → 0 for large r at all
T > 0, the conclusion is that the 2D XY model has no long range order and
therefore no non-trivial phase transition.
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Quasi long range order

It turns out that the 2D XY model still has a phase transition at a finite
temperature. Below that transition the system has what is called quasi long
range order. Above that transition there start to appear single vortices in
the system and the transition is therefore called a vortex-unbinding transi-
tion. For the work on the Berezinskii-Kosterlitz-Thouless transition Koster-
litz and Thouless was rewarded with half the Nobel prize for Physics in 2016.
(Berezinskii was then long deceased.)



74 CHAPTER 4. THE ISING MODEL



Chapter 5

Simple stochastic models

5.1 Scale free behavior

We have seen that there is no characteristic length in the 2D Ising model at
Tc. We say that the Ising model is scale free at criticality. This property is in
marked contrast to most physical phenomena where an understanding may
be obtained by focusing on the behavior at a certain length and/or energy
scale and neglecting possible processes at larger and/or smaller lengths. As
an example, the behavior of an atom or a molecule may be examined without
considering on the one hand the details of the nucleus and on the other hand
the macroscopic environment of the molecule. This separation of length
scales is important since it means that we can consider one part of the awfully
complicated system at a time, and this is crucial for the scientific development
of the last centuries.

Problems that include many widely different length scales are often diffi-
cult to handle—both analytically and numerically—and may well require a
new way of thinking. One example of a successful attack on such problems
is the Renormalization Group theory by Wilson who was awarded with the
Nobel price 1982 “for his theory for critical phenomena in connection with
phase transitions”. There are also several examples of problems that are
as yet not understood that are difficult to handle at least to some degree
because of the very different length (or time) scales involved:

• Turbulence is the main unsolved problem in classical physics. The onset
of turbulence depends on the behavior of the system on all scales from
the atomic scales to macroscopic dimensions.

75
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• The Gutenberg-Richter law is extracted on the basis of the statistics of
the magnitudes of earth quakes. Formulated in terms of the released
energy the histogram obeys a power law, H(E) ∼ E−C .

• A well known scale free phenomenon is the 1/f -noise that has been
observed in many diverse systems like the flow of the river Nile, light
from quasars, and high-way traffic.

The possibility of scale free behavior is a common property of many of the
models in the present chapter and has for quite some time been an area of
very active research.

5.2 Site percolation

Percolation is our first example of a simple stochastic models with a surpris-
ingly complex behavior.

Figure 5.1: A configuration is said to percolate if it is possible to get from one
side of the system (say the bottom) to the other (the top) by only stepping
on occupied bonds/sites. The grey line shows the percolating path across the
system. All sites that are connected to this path constitute the percolating
(or spanning) cluster.

In percolation one considers the possibility to find a path across a medium
with randomness. There are two kinds of percolation on a lattice, bond per-
colation and site percolation. In both cases there is a occupation probability
p for each bond/site to be occupied. A configuration is said to percolate if it
is possible to get from one side of the system (say the bottom) to the other
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(the top) by only stepping on occupied bonds/sites. One may then define
percolation probabilities P bond and P site that depend on both the system size
and p. In the following we will only consider site percolation.

It turns out that the natural definition of a percolating cluster becomes
slightly different with open and periodic boundary conditions. With OBC
the bottom and top rows are special and the question to consider is the
possibility to get from the bottom to the top. This criterion for percolation
has to be modified when periodic boundary conditions are used. One reason
for this is that with PBC the top row may be reached by going a single step
downwards from the bottom row. Another reason is that we need a criterion
that is independent of the position of the boundary. With PBC, the move of
a row from the bottom to the top should never change a percolating system
to a non-percolating one, or vice versa. With this requirement, an acceptable
criterion for percolation is whether there exists of a path where the sum of
the steps is equal to (0, L). Whereas the two definitions often agree about
the percolation, Fig. 5.2 shows two configurations where the two definitions
actually do give different answers.

Figure 5.2: Percolating paths for periodic and open bondary conditions. The
left figure percolates only with PBC because of the possibility to cross the
boundary and then return back again. The right figure on the other hand
percolates with OBC since it is possible to get from the bottom to the top.
Since it is not possible to return back to the original site after crossing the
system there is no percolation with PBC.

We now turn to some results for site percolation on a 2D square lattice.
Figure 5.3 shows the percolation probability, PL(p), for L = 8, 16, and 32.
Two things are immediately obvious:
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Figure 5.3: Percolation probability for three different system sizes together
with the step function that holds in the limit of infinite size.

1. The lines for the different sizes cross to a good approximation at a
single point.

2. The slope of the curves becomes larger for larger L

Since the slope becomes larger for larger system sizes one may infer that it
is infinite in the limit L → ∞ and that the function, in this limit, becomes
equal to the step function P∞(p) = θ(p − pc), shown by the dashed line. pc
is called the critical occupation probability.

For bond percolation on a square lattice the critical occupation prob-
ability is pbondc = 1/2 for symmetry reasons. For site percolation there is
no corresponding symmetry and the analytic determination of pc is still an
unsolved problem. An approximate determination of pc with simulations is
however relatively simple and as we will see the simulations may also give
lots of information about the behavior of the model as pc is approached from
above or from below.

5.2.1 Distribution of cluster sizes

The possibility to examine and measure all kinds of properties of the model
is one of the great advantages of simulations in comparison to experiments.
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The reason why this is possible is of course that all the underlying variables
are accessible for investigation which is in sharp contrast to experiments that
usually allow for only a small set of measurements.
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Figure 5.4: The distribution of cluster sizes. The left panel which shows the
data for p < pc on a log-lin scale gives clear evidence for an exponential decay,
∼ e−s/µ, whereas the right panel illustrates the algebraic decay of H(s) at
p = 0.593 ≈ pc.

In site percolation one such quantity that gives additional information is
the distribution of cluster sizes, s. A “cluster” is here understood to contain
all the interconnected sites. For small p one expects to find only rather small
clusters, but as p increases towards pc, larger clusters start to appear. To
illustrate this behavior, Fig. 5.4 shows histograms of s for some different
values of p ≤ pc. When plotted on a log-lin scale the data sets give evidence
of a straight line behaviors, lnH = const− s/µ. This is the same as

H(s) ∼ e−s/µ,

where µ is a measure of a characteristic cluster size. From the decreasing
magnitude of the slope we conclude that the characteristic size µ increases
as p→ pc in accordance with the expectations. Figure 5.4a only shows data
for p < pc. In Fig. 5.4b the same data plotted on a log-log scale now also
includes data for p = pc. In that figure the characteristic cluster size is seen
by the curves starting to bend downwards at different values of s.

For p = pc the data fits nicely to a straight line, lnH = const − a ln s,
with a ≈ 2. This may also be written

H(s) ∼ s−a.
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Note that there is a crucial difference between this form and the exponential
decay that the latter has no characteristic scale. This means that there is
no “typical” cluster size but that there are clusters of all sizes. This shows
nicely that the percolation model is scale free at pc.

5.2.2 Fractal dimension

The usual relation between the massm and the linear extension ℓ of an object
is

m ∼ ℓd,

where d is the dimensionality; d = 2 in our present problem or d = 3 for bulky
materials. Objects that obey the above relation are said to be compact.

In recent years Mandelbrot and others have introduced the concepts frac-
tal and fractal dimension, df , to describe properties of ramified and airy
objects. Objects are considered to be fractal if they obey a similar relation,
but with df < d,

m ∼ ℓdf .

This means that fractals are less dense on larger scales, which is possible only
if the objects have holes of all sizes.

The percolation cluster at pc is an example of a fractal object. Since
df < d this has the surprising consequence that the density of the percolating
cluster vanishes in the large-L limit.

5.2.3 The correlation function

The distribution of cluster sizes discussed above, is the conceptually simplest
quantity that provides evidence for scale invariance. Because of the fractal
property of the clusters that quantity is however not useful for examining the
length dependence. To get a measure of a characteristic length we instead
turn to the correlation function. From the usual definition of the correlation
function e.g. in the Ising model a natural definition of g(r) could be

gusual(r) = the probability that the position r′ + r is occupied
granted that r′ is an occupied site.

However, in the present model the occupance probability for any site is in-
dependent of all the others, and we have trivially, gusual(r) = p, which means
that this function not is useful for characterizing the system.
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It is nevertheless possible to define a “correlation function” by keeping in
mind that the issue at focus is connectivity. We therefore define

g(r) = the probability to find a connected path from an arbitrary
occupied position r′ to r′ + r.

The behavior of this function is qualitatively similar to the distribution of
cluster sizes. For p < pc we have

g(r) ∼ e−r/ξ, p < pc,

and right at the percolation threshold the behavior is again scale free:

g(r) ∼ r−η, p = pc.

0 20 40 60 80
0.0001

0.001

0.01

0.1

1

r

g
(r

)

1 5 10 50 100
0.0001

0.001

0.01

0.1

1

r

g
(r

)

Figure 5.5: Correlation function in 2D percolation.

5.2.4 The correlation length

Analytical results for p→ 0

Before turning to the simulation results we will discuss the possibility of an
analytic approach. It turns out that this can be done exactly in the simple
1D case and that the same results holds in arbitrary dimensions in the limit
when p→ 0. The possibility to compare the simulation data with analytically
obtained results is very valuable as a check that the simulations are really
doing the right thing.
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Consider first the one-dimensional case. Since g1D(r = 1) is equal to the
occupance probability we have g1D(1) = p. This may also be generalized to
arbitrary r,

g1D(r) = pr = er ln p.

Written in this way this is seen to be an exponential decay and we may
identify ξ = −1/ ln p.

In two dimensions the paths connecting two sites may be of many shapes
but in the limit of small p the shortest path will contribute the most to
the correlation function. Since these shortest paths are identical to the 1D
configurations the same result for the correlation length holds in 2D (and
higher dimensions) as well,

ξ = −1/ ln p, p→ 0.

For larger p and 2D the correlation function gets contributions from a large
number of paths and therefore decreases more slowly; we therefore expect
ξ2D ≥ ξ1D.

Numerical results

Figure 5.6a shows the dependency of the correlation length ξ on the occu-
pancy probability, p in 2D. The correlation length has been obtained with the
methods discussed in Sec. 7.5. As p approaches pc (shown as a dashed line)
from below, ξ is seen to increase rapidly. To analyze this behavior further
we plot ξ versus pc − p with a log-log scale in Fig. 5.6b. The data is found
to obey

ξ ∼ (pc − p)−ν , ν = 4/3,

where the value of the exponent ν is a known exact result.
It is similarly possible to define a correlation function that has a non-

trivial behavior at p > pc by first removing the spanning cluster from the
system. The above equation for the divergence of ξ may then be written in
the more general form,

ξ ∼ |p− pc|−ν . (5.1)

Radius of gyration and the correlation length

The radius of gyration is often used to characterize various geometric objects
and may actually also be used to determine the correlation length. With a
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Figure 5.6: Correlation length in site percolation in 2D.

cluster of size s consisting of the occupied points ri, i = 1 . . . s, the center of
mass is r̄ = (1/s)

∑

i ri, and the radius of gyration is defined as

R2 =
1

s

s
∑

i=1

(ri − r̄)2. (5.2)

Note that the center of mass, and thereby the radius of gyration, cannot
be defined on the percolating cluster. For the below expressions to work
properly we therefore need to remove the percolating cluster if it happens
to appear. Below pc, where a percolating cluster is a finite size effect, it is
however much better to try and do the analysis on systems that are large
enough that they practially never appear.

Now assume that the distribution of distances between pairs of points in
the same cluster falls off exponentially, P (r) ∼ e−r/ξ. We then have

〈

r2
〉

=

∫

dr r2e−r/ξ

∫

dr e−r/ξ
.

By partial integration (with the limits at r = 0 and infinity) we have
∫

dr r2e−r/ξ =
[

(−ξ)r2e−r/ξ
]

+ ξ
∫

dr 2re−r/ξ

= 2ξ2
∫

dr e−r/ξ,

which gives 〈r2〉 = 2ξ2.
To apply this to site percolation with a number of non-spanning clusters

we write

ξ2g =
1

2

〈

(rci − rcj)
2
〉

=

∑

c

∑

ij(r
c
i − rcj)

2

2
∑

c s2c
,
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where the index c is a cluster identifier, sc is the cluster size, and the indices
i and j only include sites that belong to a given cluster. To relate this
expression to Eq. (5.2), define ui = ri − r̄ and make use of

∑

i ui = 0:
∑

ij

(ri−rj)
2 =

∑

ij

(ui−uj)
2 =

∑

ij

u2
i +

∑

ij

u2
j +2

∑

i

ui

∑

j

uj = 2s
∑

i

(ri− r̄)2.

(5.3)
Putting all this together gives the correlation length in terms of the radius
of gyration for each cluster,

ξ2g =

∑

c s
2
cR

2
c

∑

c s
2
c

,

or in terms of Rs – the average radius of gyration of a cluster of size s,

ξ2g =

∑

s nss
2R2

s
∑

s nss2
,

where ns is the number of clusters of size s. Note that the above equations
give considerably more weight to larger clusters than what would be obtained
by just taking a straight average of the radii of gyration of all clusters.

5.2.5 The order parameter

The order parameter in the Ising model is the magnetization. The corre-
sponding quantity in percolation theory is the relative size of the spanning
cluster,

qspan = sspan/Ld.

The exponent β is defined from the vanishing of the order parameter,

qspan ∼ (p− pc)
β . (5.4)

For percolation in 2D the value is known exactly, β = 5/36.
The size dependence of the order parameter qspan is shown in Fig. 5.7,

together with a curve that shows the approach to zero ∼ (p − pc)
β for the

L → ∞ limit. Note that larger sizes are needed when we like to probe the
behavior closer to pc.

The above equation implies that the spanning cluster right at the perco-
lation threshold in the limit L → ∞ constitutes a vanishing fraction of the
total system. The same conclusion was also reached in Sec. 5.2.2 and was
there found to be a consequence of the fractal property of the percolating
cluster.
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Figure 5.7: The relative size of the spanning cluster at pc together with the
behavior in the large-L limit.

5.2.6 Average size of non-spanning clusters

Another quantity that characterizes the phase transition is the average size
of the non-spanning clusters,

S(p) =
1

Nc

Nc
∑

c

sc.

In analogy with the susceptibility this quantity behaves as

S(p) ∼ |p− pc|−γ, (5.5)

with γ = 43/18 in 2D.

5.2.7 Finite size scaling in percolation

As discussed above our percolation model has a diverging correlation length,
ξ ∼ |p− pc|−ν . When one is doing simulations on finite systems one expects
the behavior close to pc to be a function of L/ξ, or, equivalently a function
of (L/ξ)1/ν which may also be written (p − pc)L

1/ν . For a quantity A with
scaling dimension yA the standard finite size scaling assumption is then

AL(p) ∼ LyA/νfA((p− pc)L
1/ν),

where fA is a scaling function. The scaling dimension may sometimes be
deduced through scaling arguments but is otherwise obtained from finite size
scaling of the data.
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Percolation probability

The simplest quantity for finite size scaling analysis is the percolation prob-
ability PL(p) shown in Fig. 5.3. A scaling collapse of the same data is shown
in Fig. 5.8.
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Figure 5.8: Scaling collapse of the percolation probability for three different
system sizes.

The order parameter The size dependence of the order parameter qspan

was shown in Fig. 5.7. To collapse the data one plots Lβ/νqspan versus (p −
pc)L

1/ν as shown in Fig. 5.9.

5.3 Random walk

Random walk is another simple stochastic problem with numerous applica-
tions as e.g. diffusing atoms or the shape of polymers. Whereas random walks
often live in a continuum, we will here put them on a lattice. The reason
is, as before, that the interesting behavior not should depend on such details
and that this will simplify and speed up the simulations.

5.3.1 Simple random walk

A simple random walk may be described as a number of vectors di with unit
length but random directions in a d-dimensional space. How far will such a
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Figure 5.9: Scaling collapse of Lβ/νqspan in a narrow region around pc. Note
that the data for the smallest size deviates slightly. Such effects are called
corrections to finite size scaling.

walk typically reach after N steps? Define

S =
N
∑

i=1

di.

Since the steps are independent of one another we have

〈di · dj〉 =
{

1, i = j,
0, i 6= j,

independent of the dimensionality, and the expectation value of S2 is,

〈

S2
〉

=

〈

∑

i

di ·
∑

j

dj

〉

=

〈

N
∑

i=1

d2
i

〉

+

〈

N
∑

i=1

∑

j 6=i

di · dj

〉

= N, (5.6)

which means that the root-mean-square distance is
√

〈S2〉 =
√
N.

Note that this result holds independent of dimension, d. Since this result
describes the dependence of a typical length, we write ν = 1/2.

Another quantity that characterizes the random walk is the radius of
gyration of the N + 1 points r0,. . . , rN of the random walk with N steps,

R2 =
1

N + 1

N
∑

i=0

(ri − r̄)2.
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With the use of Eq. (5.3) this may be written

R2 =
1

2(N + 1)2
∑

ij

(ri − rj)
2,

and together with 〈(ri − rj)
2〉 = |i− j| and N +1 ≈ N , which holds for large

N , this becomes

〈

R2
〉

=
1

2N2

∫ N

0
dx
∫ N

0
dy |x− y| = 1

N2

∫

dx
∫ x

0
dz z =

1

N2

∫ N

0
dx
x2

2
=
N

6
,

and together with Eq. (5.6) we find

〈S2
N〉

〈R2
N 〉

= 6.

5.3.2 Self-avoiding walk

After this short introduction to the analytically solvable simple random walk
we now turn to the more interesting and considerably more difficult case
of self-avoiding random walk. We will now sketch three different methods
with increasing sophistication. Even though a “better” method of course
normally is much more efficient than a simple one it is always wise to start
out with a program that implements the simplest possible method. The
results from that program may then be used to verify that the more efficient
and complicated program actually is correct.

We would really like to calculate the averages over the whole set of dis-
tinct self-avoiding paths. The methods below that select samples out of this
huge set, therefore need be constructed with care to chose samples that are
representative of the whole set.

Random generation

The simplest method is to just generate a number of random walks and then
discard the ones that happen to be self-intersecting. In practice this is done
by aborting the run when a site is visited a second time. In this method
we choose by random between z − 1 different directions and therefore at the
outset discards the possibility to go back along the same path.

This method works nicely for medium long random walks, but because
the run has to be aborted at self-intersection it becomes difficult to obtain
good statistics for runs with say N = 100 in two dimensions.



5.3. RANDOM WALK 89

Survival biasing

In the next level of sophistication we only choose among the steps that are
acceptable, i.e. non-self-intersecting. It is then necessary to compensate for
this biased choise by introducing a weight factor for all such steps. With
zi acceptable directions for step i to choose among out of the z − 1 non-
backtracking directions, the walk should be weighted by a factor zi/(z − 1).
Each walk then gets a total weight factor

wµ =
N
∏

i=1

zi
z − 1

, (5.7)

which is used to calculate the averages of various quantities,

〈Q〉 =
∑

µwµQµ
∑

µwµ

. (5.8)

This is our first example of survival biasing that is a common method in
Monte Carlo simulations of particle transport, cf. Sec. 9.2.4.
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Figure 5.10: End-to-end distance for walks of length N from survival biasing.
The left figure which is

〈

S2
N

〉

vs. N obtained from 108 random walks, shows that
the precision in S2 for longer walks—say with N > 200—are bad. The explanation
is that there is a huge spread in the weight factors ωµ. This is shown in the right
figure (from a shorter run with 105 random walks) with the main message that
ωµ (here determined for N = 250) spreads a lot. Shown on the y axis are the
corresponding values of S2

µ(N = 250). From this figure it becomes clear that the
numerator of Eq. (5.8) will be dominated by a small number of terms. (For this
calculation z − 1 (=3) in the denominator of Eq. (5.7) was replaced with 2.6, to
avoid getting very small values of ωµ.)

There are limitations that affect the use of this method as well. As shown
in Fig. 5.10 the spread in wµ becomes large for very long walks and this has



90 CHAPTER 5. SIMPLE STOCHASTIC MODELS

adverse effects on the calculations since the average may be dominated by a
small number of walks. For very long walks it is then better to consider the
next level of sophistication.

Chain of configurations

An even more efficient method is the pivot algorithm. Instead of producing
new random walks from scratch over and over again, the idea is now to modify
an existing walk[4]. The following steps are then performed many times:

1. Choose a point along the chain at random.

2. Select a symmetry operation (see below) by random and perform that
operation on one part of the chain.

3. Accept this modified chain if it is self-avoiding. Otherwise, restore the
old configuration.

4. Measure and collect various properties of the chain.

The symmetry operations can be rotations, reflections or combinations of the
two. The most time-consuming part is to check for self-avoidance. With the
pivot point denoted by rp we need to check for each 0 ≤ i < p and p < j ≤ N
whether ri = rj. This is a test where the average number of operations goes
as N2.

Recent work has however also led to more complicated but faster imple-
mentations [5] with the simulation time of the order of logN , which of course
give a tremendous speedup. At the time of this writing the most precise value
of the exponent for 3D SAW is ν = 0.58759700(40) [6].

The pivot algorithm is yet an example of Markov chain Monte Carlo and
that also implies correlations between generated configurations and the need
for “burn in” in the beginning of the simulation:

• It is perfectly acceptable to start from a straight walk and apply the
pivot algorithm over and over again. It is however clear that the first
configurations would be biased towards untypically large end-to-end
distances. Before one starts to collect data it is therefore necessary to
apply the pivot algorithm quite a few times. In thermal simulations
this corresponds to the thermalization of the system.
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• The random walks produced in this way are not independent but strongly
correlated to one another. This has to be considered when estimating
the statistical uncertainities.
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5.4 Self-organized criticality

We have now the existence of scale free behavior both in the Ising model and
in site percolation. In both cases we could define a correlation length that
diverges at criticality and it was also found that the correlation function in
both cases decay algebraically. In percolation the distribution of cluster sizes
again gave evidence for a scale free behavior. Similar behaviors are found in
many different models. One thing these models have in common is that one
has to adjust some parameter (e.g. temperature or occupation probability)
in order to see the scale free behavior.

As mentioned above scale free behaviors are common in nature, one ex-
ample being the Gutenberg-Richter law for the occurence of earthquakes. In
this case it is not obvious that there is any parameter that happens to be pre-
cisely at the critical value. Instead, the processes behind the earthquakes are
postulated to have the property to automatically adjust their properties such
that they become scale-free. This is what lies behind the name self-organized
criticality.

Self-organization is maybe best explained with the sand pile model. As-
sume that we drop grains of sand one at a time on a sand pile. The effect
would be that the slope of the sand pile would gradually increase and when it
becomes big enough we would have an avalanche. Whereas most avalanches
are small and only involve a few grains of sand they would occasionally be
very big and the distribution of avalanche sizes could (hopefully) be shown to
be algebraic. Whereas the experiments on real sand piles do not quite show
the expected behavior (rice piles do better) the sand pile is the paradigmatic
example of self-organized criticality.

5.4.1 The sand pile model in one dimension

We will now describe three different 1D sand pile models to see what is
needed to get a non-trivial behavior. The sand pile is described by a height
variable, hx for x = 0 through L− 1.

• We first try with the following rule: (1) at each time step add one grain
of sand at x = 0. (2) For each site with hx − hx+1 > 1, move a grain of
sand to the right:

hx − 1 → hx,

hx+1 + 1 → hx+1.
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When defining the size of an avalanche to be the number of times the
toppling condition has been fulfilled these rules give a simple behavior
with H(s) = const.

• Next, let the toppling event mean that two grains of sand are moved
to the right and land at the neighbor to the right and the next nearest
neighbor to the right. If hx − hx+1 > 2,

hx − 2 → hx,

hx+1 + 1 → hx+1,

hx+2 + 1 → hx+2.

• To get a non-trivial behavior we need to introduce some randomness.
That may be done by adding the grain of sand to a site chosen by
random. Considering the distribution of sizes of avalanches, s, we then
find an algebraic distribution as shown in Fig. 5.11.

1 5 10 50 100

0.0001

0.001

0.01

0.1

Slope = −1.64

s

H
(s

)

Figure 5.11: Distribution of sizes of avalanches in a 1D sand pile.

5.4.2 The sand pile model in two dimensions

A popular sand pile model lives on a 2D lattice with coordinates r = (x, y),
0 ≤ x < L and 0 ≤ y < L. It is most common to model the local slope and
the rules for the model are:
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1. Choose a site r by random and increase the slope by one,

Zr → Zr + 1.

2. If Z reaches the critical value Zcr ≥ 4, spread out the slope at the four
neighboring sites, r′,

Zr → Zr − 4,

Zr′ → Zr′ + 1.

Iterate this until Zr < Zcr for all r. For this iteration note that the
update should be synchronous. This is obtained by first checking for
the sites with Zr = Zcr and after that updating the Z.

The model we have described has been compared to a set of lazy bureaucrates
in an office with their tables arranged in a square grid. Even now and then
a random bureaucrat gets a piece of paper from the outside. He doesn’t deal
with it until he finds too many papers on his desk. He then sends one piece
of paper to each of his four neighbors. All bureaucrates handle the pieces of
paper in the same way except for those placed at the wall who simply throws
one of the papers through the window.

In this model one has found power laws in distributions of both the size
and the time of the avalanche, which are defined as follows:

• The size S of an avalanche is given by the number of times the critical
value has been reached.

• The time τ of an avalanche is the number of times that synchronous
updates have been performed. Since several sites may be affected at a
single time step one usually finds that τ < S at all but the smallest
sizes.
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5.5 Complex networks

The different models considered above all have the property in common that
they live in some simple space in three or two dimensions. It is then compu-
tationally convenient to put the variables on some kind of lattice.

It is however not difficult to find phenomena that cannot be put on any
kind of regular lattice. Some examples are relations between people, links in
html-documents, metabolic pathways, and the neural network in the brain.
The field of Complex networks attempts to answer questions related to prop-
erties of such networks.

5.5.1 What is a network?

A network consists of some nodes connected by links. (Or, vertices con-
nected by edges.) It should be noted that links are of two different kinds,
directed/undirected. In some cases there is also a capacity related to each
link and there are many other possible generalizations.

5.5.2 Examples of networks:

• Social networks: a set of people with certain interactions between them.

• Information networks: citation networks, links in html-documents.

• Technological networks: the electric power grid, internet (direct contact
between computers).

• Biological networks:

– neural network in the brain

– the metabolic pathways (node: chemical reaction, link: molecule)

– the genetic regulatory network (node: presence or absence of a
particular protein (A), link: the effect of protein A on the expres-
sion of a gene and thereby the production of protein B.

– the food web, node: a species, links specify predator-prey interac-
tions.

– blood vessels.
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5.5.3 Small world networks – Watts & Strogatz

An often mentioned experiment was performed by Stanley Milgram in 1960.
In his experiment a number of letters were able to reach a destinated target
individual in on the average six steps. The restriction was that each person
handling the letter was only allowed to hand it over to one of his aquintancies.
The usual interpretation is that a connection may be made between two
arbitrary persons through only six steps – the small world phenomenon.

In the pioneering work byWatts & Strogatz[7] they pointed out that many
naturally occuring networks in some sense are between random networks and
ordered networks. A characteristic property of a random network is precisely
the small world phenomena, that the mean path length increases very slowly
(logarithmically) with system size. With dij denoting the minimum path
length (number of links) between node i and j the mean path length is
defined as

ℓ =
1

1
2
n(n− 1)

∑

i≥j

dij

In ordered networks on the other hand the mean path length grows linearly
with system size but a property that characterizes ordered networks is clus-
tering. Clustering means that the probability for a link between node i and j
is large if they are both linked to another node k. The clustering coefficient
is defined as

C =
3× number of triangles in the network

number of connected triples of vertices

The interesting thing is now that many naturally occuring networks seem to
have properties in common both with random and ordered networks; both a
large clustering coefficient and a small mean path length. Some examples of
networks with both these properties are

• Film actors

• Power grid

• Neuron connections in C. elegans

Watts and Strogatz also suggested a simple model that may be gradually
taken from an ordered network to a random one. The model is illustrated in
Fig. 5.12
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p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 5.12: The Watts & Strogatz model.

The starting point is a perfectly ordered network with n nodes and links
both between nearest and next nearest neighbors. The idea to introduce
randomness is to step through all links and rewire the link with probability
p. The dependence of the mean path length and the clustering coefficient is
shown in Fig. 5.13. Note that there is a large region where the system has
both a small mean path length ℓ (typical of random systems) and a large
clustering coefficient (typical of ordered networks).

Figure 5.13: The mean path length ℓ and the clustering coefficient C as a
function of the rewiring probability p for the Watts & Strogatz model.
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An important concept to describe describe the resulting network is the
degree, k which is the number of links per node. For the perfectly ordered
system k = 4 for each link but when randomness is introduced the different
nodes will have different k the system may then be described with a degree
distribution pk.

5.5.4 Degree distribution – Barabási & Albert

The degree distribution of a random network is either a binomial or a Poisson
distribution but it turns out that many real world networks has a rather
different behavior where pk has a tail up to values that are far above the
mean. Some examples of networks with that property are:

• Actor collaborations – a link exists between two actors if they have
played in the same movie.

• The world wide web – the links are the references from one web page
to another.

• The connectivity of the power grid for the USA.

For several of these networks the degree distribution obeys pk ∼ kα; they are
called scale-free networks.

Barabási & Albert have suggested a way to construct networks with a
scale-free degree distribution[8]. The basic idea is to add new nodes to the
network one after another. The links that belong to the new node are then
more likely to attach to a node with a higher degree. This is called preferential
attachment. The probability for a certain link to connect to node i is given
by

Π(i) =
ki

∑

j kj
.

5.5.5 Present research

The short description above of the papers by Watts & Strogatz and Barabási
& Albert[8] is just a brief introduction to the research on networks. There
is by now several hundreds of papers that try to attack networks in different
ways. So far the research is however mainly descriptive and many differ-
ent quantities have been defined to try to capture the essential behavior of
different networks.
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Many people working in this area have a background in statistical physics
and are used to models that belong to various universality classes character-
ized by certain values of the critical exponents. Are there any (more or less
similar) rules for the complex networks that remain to be unveiled. As things
stand today nobody knows, and the alternative – that there are no really uni-
fying principles that govern the properties of networks – still seems to be a
possibility.

The present research of networks focuses on three different questions:

1. Describe the structure in different networks.

2. How are complex networks formed?

3. Try to understand processes on networks

• Stability of networks against failuring nodes. (Where the power
grid is an interesting and important application.)

• Epidemological processes

• Search on networks

• Phase transitions on networks
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Chapter 6

Quantum Monte Carlo with the
SSE method

The stochastic series expansion method (SSE)[9, 10] is a recent addition to
the methods for doing quantum Monte Carlo and because of certain advan-
tages before other methods it is rapidly becoming popular. The simplest
model is perhaps the spin 1/2 model with nearest-neighbor interactions and
before describing the method we briefly review some basic facts from quan-
tum mechanics.

6.1 Basic relations for quantum spins

6.1.1 A single spin

A spin has three components, sx, sy, and sz but since their corresponding
operators do not commute we can only known the value of one of these at
the same time. The standard choice is to use spin states that are eigenvalues
of the Sz operator,

Szφ = szφ.

The eigenstates are |↑〉 and |↓〉, with eigenvalues

Sz |↑〉 =
h̄

2
|↑〉,

Sz |↓〉 = − h̄
2
|↓〉.

101
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The commutation relations for the operators in the three different directions
are

[Sx, Sy] = ih̄Sz, [Sy, Sz] = ih̄Sx, [Sz, Sx] = ih̄Sy.

It is sometimes convenient to use a vector notation; the eigenstates are then

|↑〉 =
(

1
0

)

, |↓〉 =
(

0
1

)

,

and the operators are given by the following matrices

Sx =
h̄

2

(

0 1
1 0

)

, Sy =
h̄

2

(

0 −i
i 0

)

, Sz =
h̄

2

(

1 0
0 −1

)

.

In the following we will need the step operators with the properties

S+|↑〉 = |0〉,
S+|↓〉 = h̄|↑〉,
S−|↑〉 = h̄|↓〉,
S−|↓〉 = |0〉,

and it is easy to see that they will be given by the matrices

S+ = h̄

(

0 1
0 0

)

, S− = h̄

(

0 0
1 0

)

.

Comparing with the matrices for Sx and Sy it is clear that they are given by

S+ = Sx + iSy,

S− = Sx − iSy,

and we also have

Sx =
1

2
(S+ + S−), iSy =

1

2
(S+ − S−).

6.1.2 A model of interacting spins

The starting point is the Hamiltonian for the Heisenberg antiferromagnet,

HJ = J
∑

〈ij〉

Si · Sj − h
∑

i

Sz
i ,

= J
∑

〈ij〉

[

Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j −

h

2J
(Sz

i + Sz
j )

]
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The first two terms may then be written

Sx
i S

x
j + Sy

i S
y
j =

1

4
(S+

i + S−
i )(S

+
j + S−

j )−
1

4
(S+

i − S−
i )(S

+
j − S−

j )

=
1

4
(S+

i S
−
j + S−

i S
+
j + S+

i S
−
j + S−

i S
+
j )

=
1

2
(S+

i S
−
j + S−

i S
+
j ),

and the Hamiltonian becomes

HJ = J
∑

〈ij〉

[

Sz
i S

z
j +

1

2

(

S+
i S

−
j + S−

i S
+
j

)

]

, (6.1)

6.1.3 Natural basis vectors

The natural basis vectors for a 1D spin model look like | ↑↑↓ · · · ↓↑〉. For a
spin-1/2 system with N spins there are 2N such states which we will denote
by |αk〉. We assume normalization,

〈αk|αℓ〉 = δkℓ.

These states are however not eigenvectors to the Hamiltonian since the step
operators have the effect to flip the spins,

S+
1 S

−
2 |↓↑〉 = h̄2 |↑↓〉.

Generally speaking the application of the Hamiltonian gives

HJ |αk〉 =
∑

ℓ

Ckℓ|αℓ〉,

where Ckℓ is a matrix. One way to approach a quantum mechanical problem
is to determine the eigenvectors |φk〉 and eigenvalues Ek of the matrix C that
obey

HJ |φk〉 = Ek|φk〉.
This is OK for reasonably small systems. A spin chain with N = 8 spins
gives 2N = 256 states which requires the solution of a 256 × 256 matrix.
However, N = 64 would generate a matrix of dimension 1019 × 1019. This
makes it perfectly clear that the study of all but the smallest sizes will need
other methods, as e.g. Monte Carlo.
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6.1.4 Expectation values

The partition function is

Z =
∑

α

〈α|e−HJ/kBT |α〉 =
∑

α

〈α|e−βH|α〉,

where the dimensionless Hamiltonian is H = HJ/J , β = J/kBT . The expec-
tation values may be written

〈A〉 = 1

Z

∑

α

〈α|A(α)e−βH|α〉.

From our previous experience of Monte Carlo it is clear that we want to
generate the configurations |α〉 with probability ∝ 〈α|e−βH|α〉 but in order
to do that we need another set of manipulations.

6.1.5 Expand the Boltzmann factor

With ex =
∑∞

n=0 x
n/n! the partition function may be written as a power

series expansion,

Z =
∑

α

∞
∑

n=0

βn

n!
〈α|(−H)n|α〉.

Already H|α〉 is difficult to handle and Hn|α〉 is even worse, but since the
Hamiltonian consists of a sum of several terms,

−H =
∑

i

Hi,

we have

(−H)n =
∑

in

Hin · · ·
∑

i1

Hi1

For each fixed n we then have

〈α|(−H)n|α〉 =
∑

{in}

〈α|Hin · · ·Hi1|α〉,

and the advantage with this step is that a single term Hin · · ·Hi1 |α〉 is a
simple thing that is possible to handle.
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6.1.6 The splitting of the Hamiltonian

As seen in Eq. (6.1) the term for each ij pair may be split into a term that
leaves the configuration unchanged (a diagonal part) and a part with step
operators which changes the configuration (an off-diagonal part). We then
write the Hamiltonian as a sum over the Nb bonds,

H =
∑

〈ij〉

· · · ⇒ −H =
Nb
∑

b=1

(

Hdiag
b +Hoff

b

)

,

where

Hdiag
b = C − Sz

i(b)S
z
j(b) +

h

2J
(Sz

i(b) + Sz
j(b)),

and

Hoff
b = −1

2
(S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b)).

We here also introduce a constant C which is necessary to avoid negative
values. Our dimensionless Hamiltonian is now

H =
∑

〈ij〉

[

Sz
i S

z
j +

1

2

(

S+
i S

−
j + S−

i S
+
j

)

− C − h

2J
(Sz

i + Sz
j )

]

, (6.2)

and we get

(−H)n =





∑

bn

Hdiag
bn +

∑

bn

Hoff
bn



 · · ·




∑

b1

Hdiag
b1

+
∑

b1

Hoff
b1





=
∑

{µn}

∑

{bn}

Hµn

bn · · ·Hµ1

b1
.

In the last step we introduce µi = “diag”, “off” and {µn} as a sequence of n
such variables.

6.1.7 The partition function

The partition function may now be written

Z =
∞
∑

n=0

βn

n!

∑

{µn}

∑

{bn}

∑

α

〈α|Hµn

bn · · ·Hµ1

b1
|α〉,
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and the expectation value becomes

〈A〉 = 1

Z

∞
∑

n=0

βn

n!

∑

{µn}

∑

{bn}

∑

α

A(α)〈α|Hµn

bn · · ·Hµ1

b1
|α〉.

For a small system, say N = 4, it is possible to peform these summations
but for bigger systems that is not possible. It is however possible to construct
a Markov chain in the configuration space. In this context a “configuration”
is a specification of n, {bn}, {µn}, and α. In the following we will use a
graphic representation of the configurations. The table below illustrates the
configuration with n = 4, {bn} = 1, 2, 3, 2, {µn} = diag, off, diag, off, and
|α〉 = |↑↑↓↓〉,

Hoff
2 Hdiag

3 Hoff
2 Hdiag

1 |↑↑↓↓〉.

The table uses the the notation |α(p)〉 for the normalized basis vector after
the operation of p operators on |α〉. The diagonal operators are marked with
an = sign whereas the off-diagonal ones are given by ⇔. Note that the
off-diagonal operators interchange the spins whereas the diagonal ones leave
them unchanged.

p Hµp

bp
1 2 3 4 Hµp

bp
|α(p− 1)〉

0 ↑ ↑ ↓ ↓ |α(0)〉
Hdiag

1 =
1 ↑ ↑ ↓ ↓ (C − 1

4
) |α(1)〉

Hoff
2 ⇔

2 ↑ ↓ ↑ ↓ 1
2
|α(2)〉

Hdiag
3 =

3 ↑ ↓ ↑ ↓ (C − 1
4
) |α(3)〉

Hoff
2 ⇔

4 ↑ ↑ ↓ ↓ 1
2
|α(4)〉

For this spin vector and sequence of operators the final spin configuration is
the same as the initial one. Since the states are orthogonal, 〈α′|α〉 = δα′,α,
it is only the configurations with this property that contribute to the sum.
The matrix element is

〈↑↑↓↓|Hoff
2 Hdiag

3 Hoff
2 Hdiag

1 |↑↑↓↓〉 =
(

1

2

)2 (

C − 1

4

)2
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Note also that the off-diagonal operators always connect sites with different
spins; the application of the operator would otherwise give the null state, |0〉
and a vanishing matrix element.

6.2 Monte Carlo update steps

The task is now to generate configurations specified by |α〉, n, and the sets
{µn} and {bn}. We usually want them to be proportional to the Boltzmann
factor but in the present case the probability for the states should instead be
proportional to

βn

n!
〈α|Hµn

bn · · ·Hµ1

b1
|α〉.

The update steps are of two different kinds:

1. The operator loop—steps that change operators from diagonal to off-
diagonal and vice versa. This is done by flipping the spins along a
certain loop. This operation changes {µn} but leaves n and {bn} un-
changed. Such a loop cluster often changes the spin states |α〉.

2. Diagonal updates—steps that create or destroy diagonal operators.
This leads to a change of n and one of the bi but |α〉 and all the
other µi are left unchanged.

These two kinds of update steps are described in more detail below.
To calculate the correct probabilities we will need to know the contribu-

tion to the Hamiltonian from the diagonal and off-diagonal operators:

W (++
+
+) = 〈↑↑ |Hb| ↑↑〉 = C − 1/4− h/(2J),

W (−−
−
−) = 〈↓↓ |Hb| ↓↓〉 = C − 1/4 + h/(2J),

W (++
−
−) = 〈↑↓ |Hb| ↑↓〉 = C − 1/4,

W (−−
+
+) = 〈↓↑ |Hb| ↓↑〉 = C − 1/4,

W (−+
+
−) = 〈↑↓ |Hb| ↓↑〉 = 1/2,

W (+−
−
+) = 〈↓↑ |Hb| ↑↓〉 = 1/2.

6.2.1 The operator loop

In the first kind of updates we think of the operators as having four legs
(numbered 1 through 4) with a spin associated to each leg. Since the position
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of each such operator is fixed, each leg is connected to a fixed leg on a given
other operator. The idea is now to construct a loop and flip the spin at the
legs that the loop passes through. The following steps are used:

1. Choose one of the operators and one of its legs by random and flip the
corresponding spin.

2. Choose an outgoing leg according to probabilities to be discussed below
and flip the corresponding spin.

3. From this outgoing leg one can always reach another leg on another (or
the same) operator. Exit, if this means that the loop closes onto itself.
Otherwise continue with step 2.

In a later version there should be some figures here.

The choice in step 2 should be done according to the detailed balance

prescription. With configurations s and s′ with their corresponding weights
W (s) andW (s′) the probabilities of change from s to s′ and vice versa should
obey

P (s→ s′)W (s) = P (s′ → s)W (s′).

For an example, consider (+−
−
+) where we enter in the lower left corner. Flip-

ping that spin we get (++
−
+) and depending on the output leg we may then

get four different spin configurations with weights:

W (+−
−
+) =

1

2
, W (++

−
−) = C − 1

4
, W (−+

−
+) = 0, W (++

+
+) = C − 1

4
.

Let us for concreteness, assume that leg number 2 is the chosen exit leg
which means that the new set of spins is s′ = (++

−
−). To examine detailed

balance we then need to consider the reverse step, s′ → s where the entry
leg is leg number 2. After entering on leg number 2 and flipping the corre-
sponding spin, the spin set is (++

−
+) which is the same intermediate set as in

the s → s′ process considered above. This means that the possibilities and
weight factors are the same for both processes.

The simplest choice for P (s→ s′) is

P (s→ s′) =
W (s′)
∑

sW (s)
,
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and it is straightforward to show by direct substitution that this fulfills the
detailed balance condition. However, this expression for the probabilities
gives a rather large probability for backtracing—exiting through the input
leg. This is a drawback since backtracing often leads to shorter operator
loops. It is however possible to choose these probabilities in different ways
which excludes backtracing and still fulfills detailed balance.

6.2.2 Diagonal update

To discuss the diagonal update we introduce an unit operator Hunit (which
does nothing) and change from operator sequences with n operators to se-
quences with M operators. If such a sequence includes M −n unit operators
this may be identical to a sequence with n (non-unit) operators.

The sum of 2Nb operators
∑

µ

∑

b Hµ
b =

(

∑

b Hdiag
b +

∑

b Hoff
b

)

is then re-

placed by 2Nb + 1 terms. We introduce the notation ν = (µ, b), where
ν = (“unit”, 0) for the unit operator.

Hunit +
∑

b

Hdiag
b +

∑

b

Hoff
b ≡

∑

ν

Hν .

The expression for the partition function is somewhat modified since it is
possible to choose n out ofM inM !/[(M −n)! n!] different ways. After com-
pensating for this overcounting the new expression for the partition function
becomes

Z =
∑

α

∑

{νM}

βn(M − n)!

M !
〈α|HνM · · ·Hν1|α〉.

For each set {νM}, n is determined as the number of non-unit (i.e. diagonal
or off-diagonal) operators in the operator chain. With the notation |α(p)〉
for the normalized state after the propagation of a fraction of the operator
string,

|α(p)〉 ∝ Hνp|α(p− 1)〉,
the (dimensionless) energy associated with a single operator Hνp is

〈α(p)|Hνp|α(p− 1)〉,

and the weight for each set ν ≡ {νM} becomes

πν =
βn(M − n)!

M !

M
∏

p=1

〈α(p)|Hνp|α(p− 1)〉. (6.3)
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We now loop over theM operator positions and try to change unit operators
to diagonal ones and diagonal ones to unit operators. The off-diagonal oper-
ators are left unchanged. To give the correct probability distribution πν the
acceptance probability for these changes should be chosen to fulfill detailed
balance. The expression from Eq. (2.10) is1

aνν′ = min

(

1,
πν′qν′ν
πνqνν′

)

.

We now consider a transition from a state ν ≡ {νM} with n non-unit oper-
ators to a state with n + 1 which differs from ν only in that νp is changed
from “unit” to (“diag”, b′). The probability to suggest b′ out of the Nb pos-
sible bonds is qνν′ = 1/Nb whereas the transition back always takes us to
(“unit”,0). The probability for this to be suggested is therefore qν′ν = 1.
Equation (6.3) gives

πν′/πν =

(

βn+1(M − n− 1)!

M !

)/(

βn(M − n)!

M !

)

× 〈α(p)|Hdiag
b′ |α(p− 1)〉,

and we get

aνν′ = min

(

1,
βNb 〈α(p)|Hdiag

b′ |α(p− 1)〉
M − n

)

(6.4)

The probability for deleting a diagonal operator at a given p, i.e. to go from ν ′

with n+1 non-unit operators to ν with n is precisely the inverse of Eq. (6.4).
If we however want n to denote the number of non-unit operators in the
initial state (whereas the value at the final state is n− 1) the probability for
the transition to be accepted should be written

aν′ν = min

(

1,
M − n+ 1

βNb 〈α(p)|Hdiag
b′ |α(p− 1)〉

)

.

1To avoid confusion we now use aνν′ for the acceptance probability instead of ανν′ since
α in the present context denotes the spin state.



Chapter 7

Technical considerations

We now turn to a number of different technical considerations that are rele-
vant for various kinds of MC programs. We will start by considering different
ways to handle 2- (or more) dimensional arrays in C. We then turn to meth-
ods for handling periodic boundary conditions. We also discuss a simple
implementation of two different kinds of queues.

7.1 2D arrays

The problems we are examining are usually defined on a d-dimensional space
with d ≥ 2. Since the arrays in C are one-dimensional constructs we need
some kind of method that allows us to address the arrays with two, or more,
coordinates. There are at least three different methods to choose between.

7.1.1 Multidimensional arrays

The simplest choice is to make multidimensional arrays in the declaration,

double arr[N][M];

where N and M usually are constant values. With this approach the address
of arr[x][y] is calculated as arr + x * M + y, but the code needed to do
that is put in by the compiler and need not bother us. To allow for this the
dimension of the last (well, all but the first) index has to be known.

The drawback with this solution is that it doesn’t allow for use of dynamic
allocation, with malloc and similar functions. With the following construct
it is however possible to create multidimensional arrays with adjustable size,
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void first_func(int L) {

int arr[L][L];

The array is allocated on the stack which means that it is lost when the
program is returning from first func. The array may only be used in calls
to other functions that e.g. may be declared like this:

void second_func(int L, int arr[][L])

7.1.2 Indexing yourself

A possibility that allows for more flexibility is to only work with one-dimensional
arrays and do the index calculations yourself. With this method arr[x][y]

would instead be written

arr[x * L + y]

To make the program easier to read it could be convenient to define a macro

#define XY(x, y) ((x) * L + (y))

or a static inline function

static inline int index(int x, int y, int L) {

return x * L + y;

}

The static inline declaration means that the code is included directly in
the function which saves the overhead associated with a function call. This is
in many respects like a macro but makes it easy to define more complicated
functions.

7.1.3 Matrices with arrays of pointers

A third alternative is to make use of an array of pointers. In that case the
L× L array may be declared and allocated as shown below

int **arr;

arr = malloc(L * sizeof(int *));

for (i = 0; i < L; i++)

arr[i] = malloc(L * sizeof(int));
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Note the use of sizeof(int *) in the first malloc and sizeof(int) in the
second one. This method requires a little space beside the L × L variables
that hold the actual data.

7.2 Periodic boundary conditions

One commonly needs to find the nearest neighbors of a certain point, say
(x, y). In 2D the nearest neighbors would normally be (x− 1, y), (x+ 1, y),
(x, y− 1) (x, y+1) but because of the periodic boundary conditions this has
to be modified for (x, y) at a boundary to give coordinates in the interval
0 ≤ x, y < L. Again, it is possible to choose between a few different methods:

1. A simple choice is to define macros for plus and minus with the peri-
odicity of the system,

#define PLUS(x, L) ((x) == (L) - 1 ? 0 : x + 1)

#define MINUS(x, L) ((x) == 0 ? (L) - 1 : x - 1)

2. If one restricts the simulations to system sizes L = 4, 8, 16, 32,. . . the
bit-and operation with L− 1 takes us back to the allowed interval:

xp = (x + 1) & (L - 1);

xm = (x - 1) & (L - 1);

3. Yet another possibility is to construct a set of arrays that hold the index
of the nearest neighbors. The advantage is that we may then do with
a single loop over the particles regardless of the number of dimensions.
The value of arr at the positition (x+ 1, y) may then be specified as

arr[xplus[ixy]]

7.3 The implementation of queues

7.3.1 A simple stack

To handle a stack (a last-in-first-out queue) one only needs a single pointer
to put to and get from the queue. The “put” and “get” operations are
performed with *ptr++ and *--ptr, respectively. A code snippet could look
like the following
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int *arr, *ptr;

ptr = arr = malloc(SIZE * sizeof(int));

*ptr++ = something;

while (ptr - arr) {

var = *--ptr;

for (depends on the application)

if (some condition)

*ptr++ = othervariable;

}

7.3.2 Fifo queue

For a fifo (first in first out) queue one needs two pointers. One for input and
the other for output. Both the put and the get operations are followed by
incrementing the pointers. A skeleton could look like the following:

int *arr, *in, *out;

in = out = arr = malloc(SIZE * sizeof(int));

*in++ = something;

while (in - out) {

var = *out++;

for (depends on the application)

if (some condition)

*in++ = othervariable;

}

With this construct the number of items processed through the queue is
obtained from the difference in - arr.

7.4 Correlation function through FFT

The correlation function is defined as

g(r) =

〈

1

N

∑

r′

sr′sr′+r

〉

.
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The time needed for a direct calculation of this quantity goes as N2. With
a Fast Fourier transform this instead becomes N lnN and this is therefore
the standard way to calculate the correlation function. Define the Fourier
transforms

sr′ =
1

N

∑

k′

eik
′·r′sk′,

sr′+r =
1

N

∑

k

eik·(r
′+r)sk.

For the sum above we then get

∑

r′

sr′sr′+r =
1

N2

∑

k,k′

∑

r′

ei(k+k′)·r′sksk′eik·r

=
1

N

∑

k

sks−ke
ik·r =

1

N

∑

k

|sk|2eik·r,

and since g(r) = 1
N

∑

k e
ik·rg(k) we identify

g(k) =
1

N

〈

|sk|2
〉

.

Note that the Fourier transform presupposes a periodicity in the system
and therefore requires the use of periodic boundary conditions. Another
consequence of this periodicity is that the correlation function also becomes
periodic with e.g. gL(L− x, y) = gL(x, y).

7.5 Determination of the correlation length

The most obvious way to get the correlation length is to fit the function
g(r) = Ae−r/ξ. In most cases of interest this behavior is correct only for
r ≥ ξ and with the choice of the fitting interval comes a certain arbitrariness
in the determination of ξ. An alternative approach is to start from the Fourier
representation of an exponentially decaying function,

g(k) ∼ 1

k̃2 + ξ−2
,
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where1 k̃ = 2 sin(k/2). Using only the two smallest k-values, k = 0 and
kmin = 2π/L gives the relation

ξ =
1

2 sin(π/L)

√

√

√

√

g(0)

g(kmin)
− 1. (7.1)

This is often the most efficient method for determining the correlation length
and becomes very handy if the correlation function is determined with FFT.
On the other hand, if the purpose is only to determine the correlation length
(and not the full correlation function g(r)) there is no point in calculating
the full function g(k). A routine that determines only g(0) and g(kmin) is
then far more efficient: just calculate sx =

∑

y s(x,y) for each x and determine

g(0) =
1

N

〈∣

∣

∣

∣

∣

∑

x

sx

∣

∣

∣

∣

∣

2〉

,

g(kmin) =
1

N

〈∣

∣

∣

∣

∣

∑

x

sxe
−ikminx

∣

∣

∣

∣

∣

2〉

.

1This is related to the discrete version of ∇eikx = keikx which is Deikx ≡ eik(x+1/2) −
eik(x−1/2) = 2 sin(k/2)eikx.



Chapter 8

To organize large scale
simulations

8.1 The two-step approach

8.1.1 Background

After writing a Monte Carlo program and doing some runs one usually col-
lects the results into a file which is then used as input to the plotting pro-
gram. It will often soon be obvious that this simple approach has some
short-comings, as problems may arise in several ways:

• After attempting to analyze the data it often becomes clear that it is
necessary to run more for some of the parameters to get higher preci-
sion. It will then be necessary to calculate the averages from all runs
together. However, performing these calculations and putting the new
data into the plotting file quickly becomes somewhat tedious.

• It may become clear that some of the manipulations of the measured
data in the simulation program were incorrect. This can e.g. be an
incorrect normalization in the determination of Binder’s cumulant. In
some cases the errors may be compensated for, but in other cases they
make the data useless.

• With access to a batch system with a number of fast computers the
large amount of data produced makes the refreshing of the plotting file
a difficult, tedious and error-prone task.
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A solution

This problem calls for a flexible, error-tolerant method for organizing the
Monte Carlo simulations and for collecting the data of interest. The method
described below is a two-step approach to this task where the first step is
the actual MC simulation together with the accumulation of the measured
data whereas the second step is the processing of this raw data to get out
the desired quantities. Splitting things up like that has several advantages:

• The calculation of averages in step II may automatically merge the
results from several simulations with the same parameters.

• The MC program may be kept simple and is therefore more likely to
be free from errors.

• It is easy to add more analyses when they are needed. One example is
error analyses that usually only are needed at the end of a project to
estimate the uncertainity in the results.

Whereas errors in the MC program often will make it necessary to discard the
data and re-run the simulations, errors in the analysis program are easily cor-
rected. As a general rule it is therefore wise to move as many manipulations
as possible from the simulation step to the analysis program.

8.1.2 Names for config- and data files

It is convenient to name both the configuration files and the data files on the
basis of the parameters. To achieve this one may use the sprintf function:

sprintf(fname, "%3.3d %5.3f", n, t);

which e.g. could give 016 2.200 or 256 2.300. The use of %3.3d instead
of just %3d prepends the number with zeros instead of spaces. One could
of course also do with %d that produces variable-length output. The fixed-
width output could however be advantageous in some cases, e.g. because the
sorting done by the ls-command (see below) automatically orders the data
by increasing size.
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8.1.3 Different types of files

To be specific we consider a MC simulation of the 2D Ising model. One can
then make use of three different kinds of files. For each kind of file we create
a directory:

data/ A data file that is easily read by the analysis program. In the very
beginning this file should contain all the relevant input parameters
(system size, temperature,. . . ) and simulation parameters (e.g. number
of samples per average) needed to analyze the data. The rest of the file
is just the collected data.

conf/ A file that stores the configuration at the end of each run. The idea with
this file is to be able to continue the simulation in another job without
the need to thermalize the system again. Each time a simulation is
started the program should check for the existence of a configuration
file with the right name. If it exists it should be used as the starting
configuration.

log/ For batch jobs we need log files that give human-readable summaries of
the runs. This should list the parameters used, tell if the configuration
was read from a conf file, the name of the data file, and also print out
some results.

8.1.4 The analysis program

The input to the analysis program should be names of data files and the
output is usually written to a file. On the command line in a Linux/Unix
system this may be written

ls data/* | analyze > anal.res

The “|” sign is a pipe that instructs the shell (the program that interprets
what is written on the command line) to connect the output from one pro-
gram (here ls) to the input of another one (here analyze). The “>” redi-
rects the output that normally should have appeared on the screen to the file
anal.res. If possible, a convenient alternative would be to run the analy-
sis program directly from within the plotting program without the need for
storage in a file.
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8.1.5 Accessing binary data files

Both the configuration files and the data files could be either formatted or
unformatted (binary). The advantage with formatted files is that they may
be examined with an ordinary editor. For binary files, on the other hand,
the advantage is that it is easy to read or write big chunks of data directly
between the memory and the file. Formatted data files are opened/closed
with fopen and fclose and written to and read from with fprintf and
fscanf. In this section we give some information about functions for access
of unformatted files.

As mentioned above it is convenient to have all the parameters readily
accessible at the very beginning of the data file. That may be done with a
struct:

typedef struct Par {

double t;

int n, nstep, nsamp;

} Par;

Create and initialize the data file

The following small function first attempts to open the file for read only. If
that doesn’t succeed it creates the file and writes the parameter struct to the
file.

int check_datafile(char *fname, Par *par) {

int fdesc;

char filename[64] = "data/";

strcat(filename, fname);

fdesc = open(filename, O_RDONLY, 0644); // Open for read-only

if (fdesc == -1) { // Not successful, try to create

fdesc = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);

if (fdesc == -1) return 0;

write(fdesc, par, sizeof(Par));

}

close(fdesc);

return 1;

}
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We usually want to append new data to the end of the data file. To that end
one needs to specify O APPEND in the second argument to the open call. To
also specify write access one gives O WRONLY | O APPEND. (The “|” character
specifies a bit-or operation.)

Read from the data file

In the analyze program one first reads the parameter struct and then all
the data till end-of-file. Since read returns the number of bytes read the
construct while(read(...)) will only continue reading as long as there is
any data left in the file.

int read_datafile(char *filename, Par *par, double *vec) {

int fdesc;

fdesc = open(filename, O_RDONLY, 0644);

if (fdesc == -1) return 0;

read(fdesc, par, sizeof(Par));

while(read(fdesc, v, SIZE)) {

// accumulate data from v into vec.

}

close(fdesc);

}

The functions open, write, read, and close used above are the basic low-
level input/output functions in the C library and are very convenient for
accessing binary files. The documentation is accessed in the info system.
Note the use of sizeof(Par) to determine the number of bytes in the struct.
In this case sizeof(par) will not do since that is only the size of a pointer.

8.2 Organizing the source code

At least for somewhat larger projects one often needs a few slightly different
versions of the program for examining the same problem in different ways.
It is however not convenient to have several separate sets of the source code
since one often wants new features to be available in all the different versions
without too much work. We now sketch a method to make that work where
the compilation is done in various subdirectories to the directory with the
sources. In these subdirectories the compilations are controlled in different
ways with the use of preprocessor variables.



122 CHAPTER 8. TO ORGANIZE LARGE SCALE SIMULATIONS

Binaries in different subdirectories

We need several different directories with different “.o”-files produced from
a single set or source and header files. It is possible to instruct make to get
the source from other directories (if they don’t exist in the current directory)
with the VPATH variable. With the following in Makefile

VPATH = ..

make may construct the following command for making ising.o:

gcc -g -O4 -c -o ising.o ../ising.c

With this construction we may have several subdirectories below the direc-
tory with the source code.

Control compilation with preprocessor directives

To get different versions of the program in the different subdirectories we
need a way to select alternative blocks of the code on the basis of certain
variables. The mechanism for doing that is preprocessor directives. To select
the code that performs cluster update or else select the code that does single
spin update we may use the construct

#ifdef CLU

// Code for cluster update.

#else

// Code for single spin update.

#endif

To make this work we need to define the variable (or macro) CLU in one of
the directories. That may be done through the variable CPPFLAGS (for C
Pre-Processor flags) in two different ways. The most direct one is throught
the -D option followed by the variable name:

CPPFLAGS = -DCLU

The second method is to instead put the definitions in a file, e.g. define.h
and instruct the preprocessor to include that file before everything else. In
the Makefile this becomes

CPPFLAGS = -include define.h
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Separate simulations from the source code

Finally, it is good to separate the simulation results from the source code.
A good way to achieve this is to have two subtrees, ~/src and ~/mc for the
source code and the simulations, respectively. The necessary connection is
then provided with soft links:

ln -s ~/src/ising/ising-clu/sim Sim

The good things with a soft link here are: (1) after a re-compilation the latest
version of the program is immediately used, and (2) it is always easy to check
the origin of the program and how it was compiled. This is in contrast to
the situation if the executable file had instead been copied to the simulation
directory.
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Chapter 9

Particle transport – a brief
orientation

Particle transport is an important field for Monte Carlo methods with many
different applications:

• radiation shields for nuclear reactors,

• the critical state for neutrons in a reactor,

• charge transport in semiconductor devices,

• estimates of the dose in radiation theraphy.

Generally speaking, particle transport may be considered to be a great branch-
ing random walk where random numbers determine

• when there is a collision,

• what kind of process that occurs (e.g. pair production, Compton scat-
tering, photoelectric effect),

• the properties of the resulting particles (direction and energy).

The programs used in such simulations are normally rather big and compli-
cated and need information both about scattering cross sections and angle
distributions for different energies of the particle of interest. Some well known
programs for such simulations are ETRAN and EGS4.
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9.1 Basic methods

Consider a photon with a certain energy. There is then three possible pro-
cesses:

• photoelectric effect (p),

• Compton scattering (C),

• pair production (pp).

The probability of a particle interacting along a path dℓ is µtdℓ where the total
interaction coefficient µt depends on both the parameters of the particle and
the nature of the medium. When there are three kinds of relevant processes
as listed above one has

µt = µp + µC + µpp.

9.1.1 Differential sampling

The simples method is differerential sampling. The idea is here to split the
medium into parts of length ∆ℓ and repeat the following steps:

• generate a random number ξ,

• if µt∆ℓ > ξ then there is some kind of interaction:

– photoelectric effect if ξ < µP∆ℓ,

– Compton scattering if µP∆ℓ < ξ < (µP + µC)∆ℓ,

– pair production if (µP + µC)∆ℓ < ξ,

• else, move the particle the distance ∆ℓ.

This is a very slow and tedious procedure which is not to be used in practice.

9.1.2 Integrated sampling

Integrated sampling is a much more efficient method. The idea is to instead
choose the distance ℓ to the interaction. Define the interaction length,

λ = 1/µ,
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which in the more general case may depend on the position. For the simpler
case of constant λ we have

P (ℓ) = 1−
∏

i

e−∆ℓ/λ = 1− e−ℓ/λ,

and with the method of inversion, Eq. (2.9), we get

ℓ = −λ ln ξ. (9.1)

For the more complicated case where λ depends on ℓ we have

1− e−
∫

dℓ′/λ(ℓ′) = 1− ξ ⇒
∫ ℓ

0
dℓ′/λ(ℓ′) = − ln ξ.

It is often impossible the solve the above integral equation analytically. A
useful trick is then to introduce a null process “self-scattering” that does
nothing. Define a constant µ∗ ≥ µt(x) and define self-scattering with the
probability coefficient

µ0(x) = µ∗ − µt(x).

The selection of the interaction point may then be done with the simpler
Eq. (9.1). To select the kind of process we calculate

∫ ℓ

0
dℓ′µP ,

∫ ℓ

0
dℓ′(µP + µC),

∫ ℓ

0
dℓ′(µP + µC + µpp),

and the choice between one of these and the null process is done by means
of a random number ξ.

9.2 Variance reduction

Assume that we are to examine a radiation shield and expect a transmission
probability of T = 10−6. A calculation with N = 108 particles would then
on the average let 100 particles through which gives a variance

σ2 = NT (1− T ) = 100, ⇒ σ = 10.

The statistical error is then 10% which is not very impressive and calls for
better methods.

The kind of calculation discussed above is an analogue MC simulation

where there is a direct relation between the process in the computer and
a possible experiment. In more advanced techniques different particles are
assigned different statistical weights that varies during the propagation.
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9.2.1 Bias in the distribution of particles

Assume that the particles are from a distribution n(E) where only the parti-
cles at the high end of the distribution are likely to contribute to the trans-
mission. It is then possible to make use of a distribution n∗(E) and assign
a weight factor w = n(E)/n∗(E) to each particle in the beginning of the
simulation.

9.2.2 Potential scoring

Consider the measurement of the energy absorbed in a region V . The simplest
method would be to let

Eabs → Eabs + E,

each time a particle with energy E is absorbed in the region under considera-
tion. If the probability for absorption is small compared to the total number
of interactions in the volume, µabs ≪ µ∗, not very many particles would be
absorbed during the simulation and the uncertainity in the result would be
large. To increase the precision one may instead assume that each interaction
deposits an energy that is scaled by the probability of absorption,

Eabs → Eabs +
µabs

µ∗
E.

Because of the larger number of events the uncertainity would be smaller
than in the analogue simulation.

9.2.3 Splitting

In this method each particle that reaches far enough (for example in the
radioactive shield) is replaced by ν particles with identical properties but
with weight

wout =
1

ν
win.

The larger number of particles again help improve the statistics.
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9.2.4 Survival biasing

In this method the possibility of absorption is entirely suppressed and this is
compensated for by modifying the weight factor,

wout =

(

1− µabs

µt

)

win.

In this way all the produced particles make a contribution, though often very
small, to the final score.

9.2.5 Russian roulette

Here the focus is to reduce the amount of work on particles with low proba-
bility to contribute to the final result. This means that we skip particles with
a probability α(E) and that the ones that continue do that with a weight
factor

w =
1

1− α(E)
.

One possible choice of α(E) is

α(E) =

{

0, E > Eref

1−E/Eref , E < Eref .
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Computer lab I

Two Monte Carlo methods for
the Ising model

I.1 Monte Carlo programs for the 2D Ising

model

The task is to write two programs to do Monte Carlo on the 2D Ising model.
You should implement both the simpler single spin Metropolis algorithm and
the more complicated Wolff cluster algorithm.

I.1.1 Get source files

Use the command below to extract some files for the Ising lab in three dif-
ferent directories.

tar xzf /home/peol0002/MonteCarlo/ising.tgz

If you are at not at the Linux system at the physics department you will first
have to download ising.tgz from the link at the web page http://www.tp.umu.se/mc.
Then extract its content in much the same way:

tar xzf ising.tgz

If everything is correct you will now have three new directories: src,
Metro, and Cluster which each contains some files. Some source files are
in src and the Makefiles in Cluster and Metro are set up to compile the
cluster version and the Metropolis version, respectively.
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I.1.2 Metropolis Monte Carlo

Several essential parts are missing in src/ising.c. You will therefore have
to go through the following steps to get a working program:

1. Start by looking at ising.h and the main function in ising.c.

The program is meant to be run with several temperatures in a se-
quence, e.g. with ./ising L=16 nblock=16 T=2.2 run T=2.22 run

T=2.24 run. Try to understand how how main and read_args work.
Also examine the functions initialize_mc and mc. Check the effect
of ntherm, nblock, and nsamp in the code.

The comments like “Fix this (2)” should be taken care of in the sug-
gested order. The numbers 2–5 refer to the steps in this list.

2. Write a routine update that performs a Monte Carlo sweep over the
system and returns the number of accepted changes.

Note that Chapter 7 in the lecture notes, “Technical considerations”,
have suggestions regarding the implementation of both 2D arrays and
periodic boundary conditions.

• For 2D arrays I prefer “Indexing yourself” and that is also con-
sistent with the functions in config.c. You are however free to
implement the 2D arrays in a different way.

• Boundary conditions: If you choose the second alternative in
Sec. 7.2, you also have to include a test in the program that the
given system size is a valid one.

When the update routine is completed it should be possible to run the
program, even though it doesn’t produce any measured results. Make
a test run with L = 8 and T = 2.2:

./ising L=8 T=2.2 run

If everything is correct you should get acceptance ratio ≈ 14%.

3. Write a function measure to measure magnetization and energy. Also
put in some code in mc to accumulate |M |, E, and E2 (which is needed
for the heat capacity.) Then complete the function result which
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should print out |m|, e, and c (i.e. magnetization, energy and heat
capacity per spin). It is good to print out both averages for each block
and the total values. The output could e.g. look like

energy c magn

-1.563313 1.056386 0.819306

-1.560219 1.103098 0.817187

-1.574837 1.035064 0.826266

-1.565069 1.046963 0.819550

-------- -------- --------

-1.565859 1.060773 0.820577

If everything is correct the energy per spin for L = 8 and T = 2.2
should be ≈ −1.568. For a longer run and higher precision, you can
try

./ising L=8 T=2.2 nblock=64 run

4. In the simplest implementation the exponential function is called many
times. This is a vaste of time since there will only be a few different
values of ∆E. Change the program by first filling an array with values
for exp(−∆E/T ) in init_tables and then using this array in the
update routine. Use the Unix command time (see below) with the old
and new versions to check that the new version really is considerably
faster.

mv ising slow-ising

make

time ./slow-ising L=64 T=2.2 seed=1 run

time ./ising L=64 T=2.2 seed=1 run

Note that the commands above set the seed to the random number
generator by hand seed=1 and this is convenient to check that two
versions of the program do the same thing. If everything is correct
the two versions should therefore produce identical results. (With the
default value seed=0 in the call to init ran a new seed is instead
taken from the clock and the sequence of random numbers is therefore
different each time, see ran.c.)
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5. We also need to be able to store configurations in files and read config-
urations from file into memory. Note the sprintf(fname,...) state-
ment in initialize_mc. Uncomment the read_config and write_config
calls in function mc. Also create a directory conf where the configura-
tion files will be stored (see config.c).

Plotting

To get the data into the plotting program in a convenient way it might
be good to write the parameters (temperature, T , and linear size, L) and
results (energy, heat capacity, and magnetization) as five columns to one
or several files directly from the simulation program. Note that we want
different symbols for different system sizes in the figures.

I.1.3 Check data for the heat capacity

We will here check that the two different ways to calculate the heat capacity
give similar results. Running the program with

./ising L=16 nblock=64 T=2.0 run T=2.1 run T=2.2

will give you values for both E and C (from the flucutation formula) at the
specified temperatures. Use

C
(

T1 + T2
2

)

=
E(T2)−E(T1)

T2 − T1
,

to calculate C(2.05) and C(2.15). Plot the two determinations of the heatreport
capacity per spin in the same diagram with different symbols.

I.1.4 Phase transition and size dependency

The phase transition in the Ising model is seen clearly in both the magnetiza-
tion and the specific heat. The transition is perfectly sharp only in an infinite
system and the quantities that ideally have a sharp and abrupt behavior be-
come smoothened in smaller systems. You should do the simulations with
nblock=64 and four different system sizes, L = 8, 16, 32, and 64. At L = 8
it is sufficient to take temperatures T = 2.0, 2.1, . . .2.8 but for the other sizes
you should take a larger number of temperatures, T = 2.00, 2.10, 2.16, 2.18,
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2.20, 2.22, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.32, 2.34, 2.36, 2.38, 2.40,
2.44, 2.48, 2.52, 2.56, 2.60, 2.70.

Note that the simulations for each size may conveniently be taken care
of by a single run of the program since the program then continues from a
configuration from a nearby temperature, which means that we can do with
rather short times for thermalization (which are chosen automatically). Note
also that the configurations are stored automatically in the conf directory
and that it is possible to read in a configuration with e.g. read=064_2.250
specified on the command line (as seen in read_args).

Plot 〈|m|〉 versus T for the four different sizes in a single figure. Con- report
nect the symbols with lines and remember to label the axes properly. Make
another figure with C versus T .

I.1.5 Cluster update

Write a routine that performs a Wolff cluster update step as described in
Sec. 4.3.4. Note that a call to the routine only should give a single cluster.
Again test your program by running for L = 8 and T = 2.2.

1. Do simulations with L = 256 and several temperatures close to Tc:
T = 2.20, 2.22, 2.24, 2.25, 2.255, 2.26, 2.262, 2.264, 2.266, 2.268 and
2.269. (To save time you can here use nblock=1.)

2. Also run with L = 1024 and temperatures T = 2.265, 2.266, 2.267,
2.268, and 2.269. (To get good precision you now have to run longer;
each run should take at least a few minutes. Good data will make the
analysis in the next step easier.)

3. Plot your data as m versus Tc−T close to Tc on a log-log scale for L = report
64, 256, and 1024. (Use Tc = 2.26919 rather than the less precise 2.269.)
If everything is correct it should be possible to identify a straight line
through the data, but there should also be clear deviations from this
behavior for smaller L. Make use of the seemingly reliable data points
close to Tc to determine the slope, and thereby the exponent β in
m ∼ (Tc − T )β. Draw a line in the same figure to show the fitted line.
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I.2 For extra points

I.2.1 The correlation time (2p)

The drawback of Markov chains is that the produced configurations are corre-
lated to one another. To study this effect we will examine the time correlation
function for the energy

CE(t) = 〈δE(t′)δE(t′ + t)〉.

Here δE = E−〈E〉 and the average is over a large number of reference times
t′. Instead of using the above formula directly (which presumes that 〈E〉 is
known) one can calculate the same thing through

CE(t) = 〈E(t′)E(t′ + t)〉 − 〈E〉2 .

One expects the correlations to decay exponentially with time,

CE(t) ∼ e−t/τ ,

which is usually true for all but the smallest t. t > τ is usually safe.

• Add some code to measure CE(t). Determine the energy correlations
for the Metropolis algorithm with L = 32 for times up to t = 200 at
temperature T = 1.8, 2.0, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, and 2.8. Around
Tc where the correlation time is longer you will need longer runs to get
good precision in the data. Plot CE(t) versus t in a single figure withreport
a log scale on the y axis. Skip data which is only noise.

• Determine the correlation time and plot τ versus T .

• Also make a separate figure with CE(t) obtained with the Wolff cluster
algorithm at T = 2.3.

I.2.2 Visualization of the simulation process (2p)

Use the g2 library to be able to see the update moves on the screen. Some
information about the g2 library is available at a link from the mc web page.
If the g2 library isn’t installed (check if /usr/lib/libg2.so.0 exists on the
computer you are using) contact Peter.
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Scaling analyses of critical
phenomena

II.1 Data handling

In this lab you should improve the data handling in your simulations by
storing data in some data files:

• Before the simulation is started (e.g. in initialize_mc) the simulation
program should check if the data file is already there. If it is not the file
should be created and the information needed for the calculations in
the summary program should be put at the beginning of the file. (This
is essentially the information in the par struct.)

More information may be found in Chapter 8, “To organize large scale
simulations”.

• After each block is completed the simulation program should write the
data associated with that block to the data file.

• You also have to write a summary program that reads the data files
and writes the output in a way which is convenient for the plotting
program. This program should take the file names from stdin and
write results to stdout. This means that it should be possible to use
it by writing

ls data/256* | summary > L256.txt
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An partial program is found at the physics computer system,
/home/peol0002/MonteCarlo/summary.c and is also available from a
link on the course web page, http://www.tp.umu.se/mc.

II.2 Finite size scaling analysis

II.2.1 The magnetization

Do runs with the Wolff cluster update method for system sizes L = 16, 32,
64, 128, and 256. Set nsamp=1000 (put it in the code for CLU) and run with at
least nblock=10. Define M =

∑

i si, m = 〈|M |〉 /L2, and t = T −Tc. Choose
the temperatures differently for different sizes such that you always have at
least seven values with −1 < tL1/ν < 1. Plot four figures with different
symbols for the different sizes:

1. m versus T (connect the points with lines)

2. mLβ/ν versus T , where you make use of the known values of β and ν
from Table 4.1. (Again connect the points with lines.)

3. mLβ/ν versus tL1/ν (no lines)

4. Zoom in figure 3 for −0.25 < tL1/ν < 0.25 and include error bars in
the plot. Also draw a line from a second order polynomial through the
data.

II.2.2 Binder’s cumulant

Plot two figures with different symbols for the different system sizes:

1. QL versus T (with lines),

2. QL versus tL1/ν (no lines).
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II.3 For extra points

II.3.1 Spin-spin correlation (2p)

The most efficient way to determine the spin-spin correlation function,

g(x) = 〈s(x′, y)s(x′ + x, y)〉 ,

is with a Fast Fourier Transform. Here we will instead do it with a simple raw
calculation. To save time you should only examine a single randomly chosen
row of spins in each measurement. Your program should do the following:

• Choose a row y by random.

• For each x = 0, . . . , L− 1 accumulate

∑

x′

s(x′, y)s(x′ + x, y).

• Write the results from each block to a file.

Note that you now want different symbols for different temperatures.
Run simulations with L = 256 and T = 2.16, 2.20, 2.22, 2.24, 2.26,

2.2692, 2.28, 2.30, 2.32, and 2.36. At Tc ≈ 2.2692 you should also run at
L = 1024 and maybe also some bigger size (2048 and/or 4096).

First plot the raw data g(x) vs. x for L = 256 and all the different
temperatures. We will then have to plot data in the different regions, T > Tc,
T = Tc, and T < Tc in different ways:

For T > Tc

We could here determine ξ from g(x) for the different temperatures and try
to examine how ξ depends on T − Tc. We will instead do a quick test that
just demonstrates that

ξ ∼ 1

|T − Tc|
,

by plotting g(x) for different temperatures (on a log scale) versus x/ξ ≡
x|T − Tc|. The data should fall on straight lines with the same slope. (Cut
off the data for large x; avoid plotting data which is only noise.)
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For T = Tc

At Tc we expect g(x) to decay algebraically. Plot g(x) for T = 2.2692 versus
x with log scale on both axes for two (or more) different sizes. Also draw a
straight line with the expected slope through the data that is not affected by
finite size effects.

For T < Tc

Below Tc g(x) approaches a finite constant at large x. To extract the ex-
ponential decay, plot g(x) − g(L/2) (on a log scale) versus x. Then make
a second figure where the same data is plotted versus x × (Tc − T ) ∼ x/ξ.
Again, the data should fall on straight lines with the same slope.

The correlation length

Finally determine the slopes in the figures for T < Tc and T > Tc, respec-
tively. Use these slopes to determine the correlation length ξ(T ) (for T 6= Tc)
and plot ξ versus T .

II.3.2 The 2D Ising model on a triangular lattice (2p)

The task is here to determine the critical temperature for the 2D Ising model
on a triangular lattice. According to universality the critical exponents
should be the same whereas quantities like Tc (of course) are different for
different two-dimensional lattices.

Start from your program for the square lattice Ising model and change to
a triangular lattice by adding links along one of the diagonals. Do simulations
for a few different sizes and determine Tc with an uncertainity less than 0.001.
To do this you need to get data with very good precision close to Tc. Avoid
using too small sizes since finite size scaling is not quite OK for the smallest
sizes. Very big systems, for which you don’t have time to get good precision,
are not good either.

A suggestion for getting a good determination of Tc is to do simulations
with L = 16, 24, 32, 48, 64, 96, and 128 at several temperature close to
Tc. One can then determine crossing points by focusing on data for L and
2L and determine f(T, L) = y(T, 2L) − y(T, L), where y is a quantity that
crosses at Tc, and for each L = 16 through 64 fit f(T, L) to a second order
polynomial and determine the temperature where this polynomial crosses
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zero. One should then find that these crossing points are about the same,
with the possible exception of L = 16 which could be somewhat below (I
think).
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Appendix A

Algorithms

A.1 Lagged Fibonacci random number gen-

erator

A.1.1 The source file ran.c

#include <stdlib.h>

#include <time.h>

#include "ran.h"

// Adapted from Newman & Barkema, Monte Carlo Methods in Statistical Physics.

#define SIZE 1279

#define OFFSET 216

#define A 2416

#define C 374441

#define M 1771875

#define CONV 2423.9674

#define UCONV (1.0/(UINT_MAX + 1.0))

#define ICONV (1.0/(INT_MAX + 1.0))

static unsigned int vec[SIZE] = {0};

static int p, pp;

/*** Initialize the vector. ***/
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void init_ran(int seed) {

int i;

if (!seed)

seed = time(NULL);

for (i = 0; i < SIZE; i++) {

seed = (A * seed + C) % M;

vec[i] = CONV * seed;

}

p = 0;

pp = OFFSET;

}

/*** This does the real job ***/

inline unsigned int uran() { // Integer 0...2^32 - 1

if (--pp < 0) pp = SIZE - 1;

if (--p < 0) p = SIZE - 1;

vec[p] += vec[pp];

return vec[p];

}

double dran() { // Double [0, 1)

return UCONV * uran();

}

double dran_sign() { // Double [-1, 1)

return ICONV * (int) uran();

}

int iran() {

return uran() & INT_MAX; // Integer 0...2^31-1

}

int iran_sign() {

return (int) uran(); // Integer -2^31...2^31-1

}
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A.1.2 The header file ran.h

#include <limits.h>

#define URAN_MAX UINT_MAX

#define IRAN_MAX INT_MAX

void init_ran(int iseed); // Initialize

unsigned int uran(); // Integer 0...URAN_MAX

int iran(); // Integer 0...IRAN_MAX

int iran_sign(); // Integer INT_MIN...IRAN_MAX

double dran(); // Double [0, 1)

double dran_sign(); // Double [-1, 1)
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