
UMEÅ UNIVERSITY May 19, 2021

Department of Physics Monte Carlo . . . in Physics, 7.5hp

Peter Olsson

Some simple stochastic models



Introduction

This computer lab has four different parts, 1 through 4. You will get one of
these assigned by the teacher; for higher grade you should complete another
one too, to you own liking. An extra exercise gives four bonus points.

1



1 Percolation

The task is to write a program that calculates the percolation probability as a
function of the occupancy, P (p). Consider a system with periodic boundary
conditions. Generate random systems where the probability for each posi-
tion to be occupied is given by p. (The number of occupied sites will thus
fluctuate and be different for different configurations). Make a program that
works in both two and three dimensions where the dimensionality is e.g. set
with #define D 2. Use the following method with a fifo queue to check for
percolation:

1. Start from each of the occupied positions at y = 0.

2. Put the position into the fifo queue.

3. Get a position (x, y) from the fifo.

4. For each nearest neighbor:

if (already visited) {

if (that was with a different y) {

percolation found

exit

}

}

else {

mark the position as visited

save the y coordinate

put the position into the fifo queue

}

Go to point 3.

To make this work one has to keep track of the y coordinate with a variable
which is not modulo L. Percolation is found when the same position has
been reached with two different values of y. (The difference should be L). If
all the occupied points at y = 0 are tried as starting points without finding
percolation one concludes that the system does not percolate.

2



For the report:

• Determine PL(p) for L = 32, 64, 128, and 256 for 0.5 < p < 0.7 for
L = 32 and more narrow intervals for the bigger sizes. Plot first the raw
data PL(p) versus p. Second, plot versus (p− pc)L

1/ν where ν = 4/3 is
known exactly. Adjust pc (which is not known exactly, but pc ≈ 0.593)
to get the best possible collapse of the data.

• Do the same in three dimensions but then with sizes L = 12, 16, 24, 32,
and 48. First identify pc from the crossing of the data and then adjust
ν to get a decent data collapse in the plot of PL(p) vs. (p− pc)L

1/ν . (It
is of course most fun to do this without first checking up values for pc
and ν from the internet.)

3



2 Cluster sizes in percolation

The idea is here to first identify clusters in site percolation and then used
these clusters to determine the correlation length in a few different ways.
Note that you are not expected to check for percolation in this exercise.

Consider the following hints for identifying clusters:

• We will restrict the study to p < pc and like to avoid the complications
involved when identifying the spanning cluster. You should therefore
make use of a very big system such that the possibility of a spanning
cluster is vanishingly small. With L = 1024 and p ≤ 0.58 it seems that
one should never find a spanning cluster. Even though the system is
big, your calculations should make use of results from a (large) number
of such systems.

• Identify the clusters one by one and do the measurements described
below. There is no need to save information related to several clusters.

• To identify clusters:

– Scan through the system and let each occupied site be a starting
point. (Make a site “unoccupied” when it has been identified as
belonging to a cluster.)

– Use some kind of queue to search through the system, much as
you did in the Wolff Cluster update method.

– To calculate the properties of the clusters it is convenient to use
x and y variables that are not restricted to the range [0, L− 1].

– Note that if L = 2n, where n is an integer, one can get an image
of x that is inside the simulation cell, i.e. 0 ≤ ximage < L, by
x & (L - 1), where & is the bit-and operator.

• During each mapping of a cluster it may be good to keep track of xmin

and xmax, and similarly in the y direction, as a test that the system
cannot percolate, without really testing for percolation.

Use three different methods to determine the correlation length:

1. First determine the correlation function g(x) from the definition

4



g(r) = the probability to find a connected path from an ar-
bitrary occupied position r′ to r′ + r.

Note that to get random occupied positions you cannot take one such
point per cluster; these random starting points have to be chosen in-
dependent of the identification of clusters.

2. Also determine ξ from

ξ2g =

∑

c s
2
cR

2
c

∑

c s
2
c

,

where R2
c is the radius of gyration of cluster c and sc is the number of

sites that belong to the cluster.

3. Finally, use the method of Sec. 7.5, i.e. determine

g(0) =
1

N

〈∣

∣

∣

∣

∣

∑

x

nx

∣

∣

∣

∣

∣

2〉

,

g(kmin) =
1

N

〈∣

∣

∣

∣

∣

∑

x

nxe
−ikminx

∣

∣

∣

∣

∣

2〉

,

where n(x,y) = 0, 1 for empty or occupied site, nx =
∑

y n(x,y), and
kmin = 2π/L. The correlation length is then found from

ξ =
1

2 sin(π/L)

√

√

√

√

g(0)

g(kmin)
− 1.

5



3 Self-avoiding random walk

The task is to study self-avoiding random walk in two dimensions with three
different methods:

1. First a determination of the exact value of 〈S2
N〉 for N = 1 through 4

through enumeration of all possible walks. Do this with pen and paper.

2. Second, a simple random generation which is aborted when the walk
becomes self-intersecting. Try to get results with high precision for N
up to 20. Compare with the first method to show that the program
works correctly. The point with this part is just to get a way to check
that the more efficient program in the next point produces correct
results.

3. Use survival biasing to get values for N up to N = 200. Note that you
will have to make a large number of runs to get good statistics for the
largest N .

For the report:

• Make a table with the results, including error estimates, for N = 1
through 20 obtained with the three different methods (well, up toN = 4
for the complete enumeration).

• Plot 〈S2
N〉 versus N for the data from survival biasing on a log-log scale.

We define the exponent ν by 〈S2
N〉 ∼ N2ν . Determine ν by fitting to

ln
〈

S2
N

〉

= const + 2ν lnN.

Do the fits for a few overlapping intervals: N = 40 . . . 80, N = 60 . . . 100,
. . . up to N = 160 . . . 200. Plot ν vs. Nmid, where Nmid is the midpoint
for the N -values used in the fits. What is you final estimate of ν?

6



4 Complex networks

We here examine two different network models.

4.1 The Barabási–Albert model

This is a model of scale-free networks. The control parameters is the number
of nodes N and the average degree m. We will here take m = 4.

1. Start with a graph of m+ 1 nodes all connected to one another.

2. Preferential attachment: Add a node and m links attached to it. The
other ends of the links should be attached to existing nodes i with a
probability proportional to the degree ki of i.

3. If the network has less than N nodes, go to step 2.

To implement the preferential attachment one can store all the links in
an array, and: 1) Pick a link by random. 2) Follow it in a random direction
to one of its nodes. Connect to that node. This is a means to get preferential
attachment. (Why does it work?)

For the report:

1. Show that the time dependence of the degree of a node is, on average,
∼ t1/2, where t is the number of iterations after its creation.

2. Show, on a log-log plot, that the degree distribution is proportional
to k−3. The best way to do that (why?) is to plot the cumulative
degree-distribution—the probability to find a node with degree larger
than or equal to K as a functuion of K. This distribution should be
proportional to K−2.

4.2 The Watts–Strogatz model

This model of N nodes and M = Nk links is defined as follows:

1. Connect a vertex i to i − k, · · · , i − 1 and i + 1, · · · , i + k. (Plus and
minus is modulo N .)

2. Go through all links and rewire each link with probability p. (Do not
accept a link that connects back to the same node or to a node which
is already connected.)

7



For the report: We will here use k = 2.

1. Take N = 1000. Plot the clustering coefficient C (see below) and the
average distance d as functions of p. Show that there is a region where
C is rather large and d is small.

2. Study the p-dependence of d for N = 100, 200, 500, 1000, and p in the
range 0.01 through 0.1. Can we conclude anything for p = 10−4 without
performing any simulations for that value of p? Is the large-N limit
of d(N, p) given by limN→∞ d(N, p) = const or limN→∞ d(N, p)/N =
const?

Technicalities: To measure the average distance d, go through all nodes
one by one and measure the distance to the others by a breadth-first search.
To calculate the clustering coefficent, use the following algorithm to measure
ctriangle and ctriple:

1. Go through the nodes i.

2. Add ki(ki − 1)/2 to the count ctriple of connected triples.

3. Loop over all pairs of neighbors of i, say j, j′. If there is a link between
j and j′ increment the triangle count ctriangle. (This will triple count
the number of triangles).

The clustering coefficient is then C = ctriangle/ctriple.

8


