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1 Data handling

In this lab you should improve the data handling in your simulations by
storing data in some data files:

• Before the simulation is started (e.g. in initialize_mc) the simulation
program should check if the data file is already there. If it is not the file
should be created and the information needed for the calculations in
the summary program should be put at the beginning of the file. (This
is essentially the information in the par struct.)

More information may be found in Chapter 8, “To organize large scale
simulations”.

• After each block is completed the simulation program should write the
data associated with that block to the data file.

• You also have to write a summary program that reads the data files
and writes the output in a way which is convenient for the plotting
program. This program should take the file names from stdin and
write results to stdout. This means that it should be possible to use
it by writing

ls data/256* | summary > L256.txt

An partial program is found at the physics computer system,
/home/peol0002/MonteCarlo/summary.c and is also available from a
link on the course web page, http://www.tp.umu.se/mc.

2 Finite size scaling analysis

2.1 The magnetization

Do runs with the Wolff cluster update method for system sizes L = 16, 32,
64, 128, and 256. Set nsamp=1000 (put it in the code for CLU) and run with at
least nblock=10. Define M =

∑
i si, m = 〈|M |〉 /L2, and t = T −Tc. Choose

the temperatures differently for different sizes such that you always have at
least seven values with −1 < tL1/ν < 1. Plot four figures with different
symbols for the different sizes:
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1. m versus T (connect the points with lines)

2. mLβ/ν versus T , where you make use of the known values of β and ν
from Table 4.1. (Again connect the points with lines.)

3. mLβ/ν versus tL1/ν (no lines)

4. Zoom in figure 3 for −0.25 < tL1/ν < 0.25 and include error bars in
the plot. Also draw a line from a second order polynomial through the
data.

2.2 Binder’s cumulant

Plot two figures with different symbols for the different system sizes:

1. QL versus T (with lines),

2. QL versus tL1/ν (no lines).
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3 For extra points

3.1 Spin-spin correlation (2p)

The most efficient way to determine the spin-spin correlation function,

g(x) = 〈s(x′, y)s(x′ + x, y)〉 ,

is with a Fast Fourier Transform. Here we will instead do it with a simple raw
calculation. To save time you should only examine a single randomly chosen
row of spins in each measurement. Your program should do the following:

• Choose a row y by random.

• For each x = 0, . . . , L− 1 accumulate

∑

x′

s(x′, y)s(x′ + x, y).

• Write the results from each block to a file.

Note that you now want different symbols for different temperatures.
Run simulations with L = 256 and T = 2.16, 2.20, 2.22, 2.24, 2.26,

2.2692, 2.28, 2.30, 2.32, and 2.36. At Tc ≈ 2.2692 you should also run at
L = 1024 and maybe also some bigger size (2048 and/or 4096).

First plot the raw data g(x) vs. x for L = 256 and all the different
temperatures. We will then have to plot data in the different regions, T > Tc,
T = Tc, and T < Tc in different ways:

3.1.1 For T > Tc

We could here determine ξ from g(x) for the different temperatures and try
to examine how ξ depends on T − Tc. We will instead do a quick test that
just demonstrates that

ξ ∼
1

|T − Tc|
,

by plotting g(x) for different temperatures (on a log scale) versus x/ξ ≡
x|T − Tc|. The data should fall on straight lines with the same slope. (Cut
off the data for large x; avoid plotting data which is only noise.)
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3.1.2 For T = Tc

At Tc we expect g(x) to decay algebraically. Plot g(x) for T = 2.2692 versus
x with log scale on both axes for two (or more) different sizes. Also draw a
straight line with the expected slope through the data that is not affected by
finite size effects.

3.1.3 For T < Tc

Below Tc g(x) approaches a finite constant at large x. To extract the ex-
ponential decay, plot g(x) − g(L/2) (on a log scale) versus x. Then make
a second figure where the same data is plotted versus x × (Tc − T ) ∼ x/ξ.
Again, the data should fall on straight lines with the same slope.

3.1.4 The correlation length

Finally determine the slopes in the figures for T < Tc and T > Tc, respec-
tively. Use these slopes to determine the correlation length ξ(T ) (for T 6= Tc)
and plot ξ versus T .

3.2 The 2D Ising model on a triangular lattice (2p)

The task is here to determine the critical temperature for the 2D Ising model
on a triangular lattice. According to universality the critical exponents
should be the same whereas quantities like Tc (of course) are different for
different two-dimensional lattices.

Start from your program for the square lattice Ising model and change to
a triangular lattice by adding links along one of the diagonals. Do simulations
for a few different sizes and determine Tc with an uncertainity less than 0.001.
To do this you need to get data with very good precision close to Tc. Avoid
using too small sizes since finite size scaling is not quite OK for the smallest
sizes. Very big systems, for which you don’t have time to get good precision,
are not good either.

A suggestion for getting a good determination of Tc is to do simulations
with L = 16, 24, 32, 48, 64, 96, and 128 at several temperature close to
Tc. One can then determine crossing points by focusing on data for L and
2L and determine f(T, L) = y(T, 2L) − y(T, L), where y is a quantity that
crosses at Tc, and for each L = 16 through 64 fit f(T, L) to a second order
polynomial and determine the temperature where this polynomial crosses
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zero. One should then find that these crossing points are about the same,
with the possible exception of L = 16 which could be somewhat below (I
think).
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