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1 Monte Carlo programs for the 2D Ising model

The task is to write two programs to do Monte Carlo on the 2D Ising model.
You should implement both the simpler single spin Metropolis algorithm and
the more complicated Wolff cluster algorithm.

1.1 Get source files

Use the command below to extract some files for the Ising lab in three dif-
ferent directories.

tar xzf /home/peol0002/MonteCarlo/ising.tgz

If you are at not at the Linux system at the physics department you will first
have to download ising.tgz from the link at the web page http://www.tp.umu.se/mc.
Then extract its content in much the same way:

tar xzf ising.tgz

If everything is correct you will now have three new directories: src,
Metro, and Cluster which each contains some files. Some source files are
in src and the Makefiles in Cluster and Metro are set up to compile the
cluster version and the Metropolis version, respectively.

1.2 Metropolis Monte Carlo

Several essential parts are missing in src/ising.c. You will therefore have
to go through the following steps to get a working program:

1. Start by looking at ising.h and the main function in ising.c.

The program is meant to be run with several temperatures in a se-
quence, e.g. with ./ising L=16 nblock=16 T=2.2 run T=2.22 run

T=2.24 run. Try to understand how how main and read_args work.
Also examine the functions initialize_mc and mc. Check the effect
of ntherm, nblock, and nsamp in the code.

The comments like “Fix this (2)” should be taken care of in the sug-
gested order. The numbers 2–5 refer to the steps in this list.
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2. Write a routine update that performs a Monte Carlo sweep over the
system and returns the number of accepted changes.

Note that Chapter 7 in the lecture notes, “Technical considerations”,
have suggestions regarding the implementation of both 2D arrays and
periodic boundary conditions.

• For 2D arrays I prefer “Indexing yourself” and that is also con-
sistent with the functions in config.c. You are however free to
implement the 2D arrays in a different way.

• Boundary conditions: If you choose the second alternative in
Sec. 7.2, you also have to include a test in the program that the
given system size is a valid one.

When the update routine is completed it should be possible to run the
program, even though it doesn’t produce any measured results. Make
a test run with L = 8 and T = 2.2:

./ising L=8 T=2.2 run

If everything is correct you should get acceptance ratio ≈ 14%.

3. Write a function measure to measure magnetization and energy. Also
put in some code in mc to accumulate |M |, E, and E2 (which is needed
for the heat capacity.) Then complete the function result which
should print out |m|, e, and c (i.e. magnetization, energy and heat
capacity per spin). It is good to print out both averages for each block
and the total values. The output could e.g. look like

energy c magn

-1.563313 1.056386 0.819306

-1.560219 1.103098 0.817187

-1.574837 1.035064 0.826266

-1.565069 1.046963 0.819550

-------- -------- --------

-1.565859 1.060773 0.820577

If everything is correct the energy per spin for L = 8 and T = 2.2
should be ≈ −1.568. For a longer run and higher precision, you can
try
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./ising L=8 T=2.2 nblock=64 run

4. In the simplest implementation the exponential function is called many
times. This is a vaste of time since there will only be a few different
values of ∆E. Change the program by first filling an array with values
for exp(−∆E/T ) in init_tables and then using this array in the
update routine. Use the Unix command time (see below) with the old
and new versions to check that the new version really is considerably
faster.

mv ising slow-ising

make

time ./slow-ising L=64 T=2.2 seed=1 run

time ./ising L=64 T=2.2 seed=1 run

Note that the commands above set the seed to the random number
generator by hand seed=1 and this is convenient to check that two
versions of the program do the same thing. If everything is correct
the two versions should therefore produce identical results. (With the
default value seed=0 in the call to init ran a new seed is instead
taken from the clock and the sequence of random numbers is therefore
different each time, see ran.c.)

5. We also need to be able to store configurations in files and read config-
urations from file into memory. Note the sprintf(fname,...) state-
ment in initialize_mc. Uncomment the read_config and write_config
calls in function mc. Also create a directory conf where the configura-
tion files will be stored (see config.c).

Plotting

To get the data into the plotting program in a convenient way it might
be good to write the parameters (temperature, T , and linear size, L) and
results (energy, heat capacity, and magnetization) as five columns to one
or several files directly from the simulation program. Note that we want
different symbols for different system sizes in the figures.
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1.3 Check data for the heat capacity

We will here check that the two different ways to calculate the heat capacity
give similar results. Running the program with

./ising L=16 nblock=64 T=2.0 run T=2.1 run T=2.2

will give you values for both E and C (from the flucutation formula) at the
specified temperatures. Use

C
(

T1 + T2

2

)

=
E(T2)−E(T1)

T2 − T1

,

to calculate C(2.05) and C(2.15). Plot the two determinations of the heat report
capacity per spin in the same diagram with different symbols.

1.4 Phase transition and size dependency

The phase transition in the Ising model is seen clearly in both the magnetiza-
tion and the specific heat. The transition is perfectly sharp only in an infinite
system and the quantities that ideally have a sharp and abrupt behavior be-
come smoothened in smaller systems. You should do the simulations with
nblock=64 and four different system sizes, L = 8, 16, 32, and 64. At L = 8
it is sufficient to take temperatures T = 2.0, 2.1, . . . 2.8 but for the other sizes
you should take a larger number of temperatures, T = 2.00, 2.10, 2.16, 2.18,
2.20, 2.22, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.32, 2.34, 2.36, 2.38, 2.40,
2.44, 2.48, 2.52, 2.56, 2.60, 2.70.

Note that the simulations for each size may conveniently be taken care
of by a single run of the program since the program then continues from a
configuration from a nearby temperature, which means that we can do with
rather short times for thermalization (which are chosen automatically). Note
also that the configurations are stored automatically in the conf directory
and that it is possible to read in a configuration with e.g. read=064_2.250
specified on the command line (as seen in read_args).

Plot 〈|m|〉 versus T for the four different sizes in a single figure. Con- report
nect the symbols with lines and remember to label the axes properly. Make
another figure with C versus T .
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1.5 Cluster update

Write a routine that performs a Wolff cluster update step as described in
Sec. 4.3.3. Note that a call to the routine only should give a single cluster.
Again test your program by running for L = 8 and T = 2.2.

1. Do simulations with L = 256 and several temperatures close to Tc:
T = 2.20, 2.22, 2.24, 2.25, 2.255, 2.26, 2.262, 2.264, 2.266, 2.268 and
2.269. (To save time you can here use nblock=1.)

2. Also run with L = 1024 and temperatures T = 2.265, 2.266, 2.267,
2.268, and 2.269. (To get good precision you now have to run longer;
each run should take at least a few minutes. Good data will make the
analysis in the next step easier.)

3. Plot your data as m versus Tc−T close to Tc on a log-log scale for L = report
64, 256, and 1024. (Use Tc = 2.26919 rather than the less precise 2.269.)
If everything is correct it should be possible to identify a straight line
through the data, but there should also be clear deviations from this
behavior for smaller L. Make use of the seemingly reliable data points
close to Tc to determine the slope, and thereby the exponent β in
m ∼ (Tc − T )β. Draw a line in the same figure to show the fitted line.

2 For extra points

2.1 The correlation time (2p)

The drawback of Markov chains is that the produced configurations are corre-
lated to one another. To study this effect we will examine the time correlation
function for the energy

CE(t) = 〈δE(t′)δE(t′ + t)〉.

Here δE = E−〈E〉 and the average is over a large number of reference times
t′. Instead of using the above formula directly (which presumes that 〈E〉 is
known) one can calculate the same thing through

CE(t) = 〈E(t′)E(t′ + t)〉 − 〈E〉2 .
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One expects the correlations to decay exponentially with time,

CE(t) ∼ e−t/τ ,

which is usually true for all but the smallest t. t > τ is usually safe.

• Add some code to measure CE(t). Determine the energy correlations
for the Metropolis algorithm with L = 32 for times up to t = 200 at
temperature T = 1.8, 2.0, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, and 2.8. Around
Tc where the correlation time is longer you will need longer runs to get
good precision in the data. Plot CE(t) versus t in a single figure with report
a log scale on the y axis. Skip data which is only noise.

• Determine the correlation time and plot τ versus T .

• Also make a separate figure with CE(t) obtained with the Wolff cluster
algorithm at T = 2.3.

2.2 Visualization of the simulation process (2p)

Use the g2 library to be able to see the update moves on the screen. Some
information about the g2 library is available at a link from the mc web page.
If the g2 library isn’t installed (check if /usr/lib/libg2.so.0 exists on the
computer you are using) contact Peter.
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