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0 Introduction

These notes will shortly introduce five different methods that can be used
to simulate a gas of interacting particles. This introductory chapter has got
number zero to make it possible to use numbers 1 through 5 for the chapters
for these five different methods.

0.1 Adding interactions to the ideal gas

The simplest description of a gas is the Ideal gas law,

pV = NkBT,

which relates pressure times volume to the number of particles, Boltzmann’s
constant, and the temperature (measured in Kelvin) in a gas where the in-
teractions between the molecules may be neglected. This is often a good
approximation, e.g. at room temperature and a pressure of 1 atm. This
equation is sometimes written pV = nRT , where n = N/NA is the number
of moles of the substance (NA is Avogadros constant) and R = NAkB is the
gas constant.

The properties of an ideal (non-interacting) gas may be calculated ana-
lytically but that is no longer possible when interactions between particles
are included. (The effects of the interactions are however captured in an
approxmative way in the van der Waals gas.)

We now approximate the interaction energy by a sum of pair interactions:

U({r}) =
1

2

∑

i

∑

j

u(|ri − rj |)

=
∑

i

∑

j>i

u(|ri − rj|).

0.2 The Lennard-Jones interaction

A common way to model the particle interaction is the Lennard-Jones inter-
action which is a pair interaction that is attractive, uLJ(r) ∼ −r−6, at large
distances and repulsive at short distances. A common choice is to let the
short distance repulsion be ∼ r−12. Taken together this gives the Lennard-
Jones potential,

uLJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (1)
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where σ and ǫ are the length and energy scales of the interaction.
The minimum of the potential is at

rmin = 21/6σ, (2)

and the interaction energy is there given by

uLJ(rmin) = −ǫ. (3)

0.3 Length and time scales

In the following we will use simulation units and will not be very much
concerned with realistic values of energies, distances, and velocities. The
point with this section is therefore only to give a feeling for the characteristic
length, time, and energy scales of a real gas.

The parameters of the LJ interaction for Neon atoms are

ǫ = 4.18× 10−22J and σ = 3.12× 10−10m.

The typical velocity may be obtained from (see Sec. 1.1)

m〈v2〉 = 3kBT,

where “3” is the dimensionality. With kB ≈ 1.38 × 10−23 J/K, m ≈ 28 ×
1.67 × 10−26kg for N2 molecules (typical of air), and T = 300K (which is
27 ◦C), this gives the typical velocity

√

〈v2〉 ≈ 103m/s.

With a potential energy that changes on scales of 10−10m this gives a time
scale of 10−13s = 0.1ps, which is therefore the order of the time step that
should be used when integrating the equations of motion for a gas at room
temperature.

0.4 Simulation units

To use simulations units we let

r

σ/m
→ r and

uLJ(r)

ǫ/J
→ uLJ(r),
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where σ/m (meter) and ǫ/J (Joule) are pure numbers. This means that r
and uLJ still have dimensions of length and energy, respectively, but that
r = σ in ordinary units is now r = 1. We also often set m = 1. For the
temperature we let kBT/(ǫ/J) → T , which means that temperature now has
the dimension of energy.

0.5 The Boltzmann distribution

Physical properties are often discussed for systems at constant temperature
and the set of possible states are called the canonical ensemble. A constant
temperature means that the energy may vary. This could at first seem to
complicate things but it is rather the opposite. Including states irrespective
of energy often simplifies both analytical calculations and numerical compu-
tations.

A key quantity in the canonical ensemble is the Boltzmann factor, e−Eν/kBT ,
and it is important since the probability of a state is proportional to the
Boltzmann factor,

Pν ∝ e−Eν/kBT .

The next section is a derivation of the Boltzmann factor.

0.5.1 Derivation of the Boltzmann factor

To discuss the properties of the canonical ensemble one considers the system,
S, to be in thermal contact with a reservoir, R, such that both energies
fluctuate, but that the total energy E = ER+ES is a constant. The reservoir
is taken to be much bigger than the system, such that the relative fluctuations
in the energy of the reservoir are negligable. The temperature of the reservoir
may therefore be considered constant.

The microcanonical ensemble is the collection of states with a certain en-
ergy. The basic assumption is then that each accessible state is equally prob-
able. An important quantity in the microcanonical ensemble is the number
of states with a certain energy, Ω(E). The entropy is related to this through

S(E) = kB ln Ω(E),

where kB is Boltzmann’s constant. The temperature is in turn related to the
entropy through

1

T
=

∂S

∂E
.
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Making use of the above in an expansion of lnΩ for the reservoir gives

lnΩ(E − Eν) ≈ ln Ω(E)−Ev
∂ ln Ω

∂E
= lnΩ(E)−

Eν

kBT
.

We now consider the probability for a certain state ν with energy Eν of the
system. This is related to the number of states of the reservoir with energy
E − Eν :

Pν ∝ Ω(E − Eν) = elnΩ(E−Eν) ∝ e−Eν/kBT , (4)

and we recover the “Boltzmann factor” introduced above.

0.6 Expression for the pressure – the virial theorem

In a simulation with molecular dynamics it is possible to determine the pres-
sure from the change of momentum the particles get when they bounce off
the walls. In a Monte Carlo simulation this isn’t possible and one instead
has to determine the pressure from a kind of correlation function that is de-
rived by means of the virial theorem. Note that this equation is only valid
in ensembles with a fixed volume, which follows since the starting point for
the derivation is the differential for the Helmholtz free energy.

The starting point is thus the differential

dF = −SdT − pdV + µdN,

which gives

p = −

(

∂F

∂V

)

N,T

.

Since βF = − lnZ we get

βp =

(

∂ lnZ

∂V

)

N,β

,

and since the Hamiltonian separates into two parts we may write

Z = ZkinZconf ,

where the kinetic part is independent of volume and is equal to Zkin = 1/vNQ
and

Zconf =
1

N !

∫

dr1 . . . drNe
−βU(rN ),
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where the integration for each ri should be performed over the volume V .
Since only the configurational part depends on V , the pressure becomes

βp =
∂

∂V
ln

[
∫

dr1 . . . drNe
−βU(rN )

]

.

This differentiation is tricky since the limits of integration depend on V. To
get around this, change coordinates to

x = r/V 1/d ⇒ drN = V NdxN .

We then get

βp =
∂

∂V
ln

[

V N

∫

dxNe−β
∑

i<j u(V
1/dxij)

]

=
d

dV
lnV N +

∂

∂V
ln

[
∫

dxNe−βU

]

=
N

V
+

[
∫

dxN

(

−β
∂U

∂V

)

e−βU

]/[
∫

dxNe−βU

]

.

(The integrations are here understood to be over a unit volume.) We also
have

∂U

∂V
=

∑

i<j

∂

∂V
u(V 1/dxij) =

∑

i<j

∂V 1/d

∂V
xiju

′(V 1/dxij) =
1

V d

∑

i<j

riju
′(rij)

which follows since

∂V 1/dxij

∂V
=

1

d
V 1/d−1xij =

1

V d
V 1/dxij =

1

V d
rij

Putting things together we get the virial theorem

βp =
N

V
−

β

V d

〈

∑

i

∑

j>i

riju
′(rij)

〉

,

which in terms of the interparticle force becomes

pV = NkBT +
1

d

〈

∑

i

∑

j>i

rijFij

〉

. (5)

Note that this simplifies to the ideal gas law in the absence of interactions,
Fij = 0.
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0.7 Different kinds of simulations

This section summarizes five different methods that may be used for simulat-
ing a gas. There are differences both in the way to describe the system and
in the kind of dynamics to use in the simulation. The numbers “1” through
“5” refer to the section numbers in these notes.

i) Describe the gas in terms of {r} and {v}.

1) Molecular dynamics: ODE – deterministic.

2) Langevin dynanics: ODE with a stochastic term.

ii) Describe the gas with {r}, only.

3) Brownian dynamics: ∆ri = cFi+ noise.

4) Monte Carlo: No real dynamics. Iterate the following for each
particle i:

∗ suggest a change ∆ri by random,

∗ calculate the change in energy, ∆Ei,

∗ accept this change with a probability that depends on ∆Ei/T .

iii) Use a discrete space with positions rℓ = (0, 0, 0), (0, 0, 1),. . . (0, 0, L−
1),. . . (L− 1, L− 1, L− 1).

5) The lattice gas: Each position can be either occupied or empty,
nℓ = 0, 1. The number of particles fluctuates in the simulation.

Going upwards in this list one finds a more realistic simulation; going down-
wards the efficiency is higher.
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1 Considerations for molecular dynamics

We have stressed in the earlier lectures that a given system may usually be
simulated in a number of different ways. First, there is a possiblity of choosing
different models (as we have already seen in the predator-prey example) and
second it is often possible to simulate a given model with different techniques.
In these lectures the focus will be on stochastic simulations — stochastic
differential equations and Monte Carlo simulations. Molecular dynamics is
only considered briefly as a background to the other methods.

1.1 Elementary physics

The behavior of a classical gas is fully specified by the Hamiltonian, which
is the sum of the potential and kinetic energies,

H({r}, {v}) = U({r}) +K({v}),

which are, in turn, given by

U =
1

2

∑

i,j

u(ri − rj),

and

K =
∑

i

miv
2
i

2
.

The dynamics is given by Newton’s second law:

miv̇i = Fi ≡ −∇iU({r}),

where ∇i denotes differentiation with respect to ri.
The collisions in a gas means that the molecules exchange momentum

(mv) which after a short relaxation time, through the central limit theorem,
leads to a normal distribution of the velocities. For each velocity component
the probability distribution is given by1

P (v) ∝ e−mv2/2T ,

and accordingly
m〈v2〉 = T. (6)

The total energy is a constant of the motion but U and K fluctuate (in
opposite directions) during the simulation.

1From now on we are using T = kBT
real.
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1.2 Cutoff in the interaction potential

If we were to do an “exact” simulation of a Lennard-Jones gas we would use
the potential out to arbitrary distances. This is however very inefficient and
it is therefore customary to introduce a cutoff, rc, such that the interaction
is zero for r > rc. Such a cutoff introduces a step in the potential which gives
an infinite force right at rc and this is problematic. One therefore shifts the
potential for r < rc:

us(r) =

{

uLJ(r)− uLJ(rc), r < rc,
0, r > rc.

This is the expression we will use in the computer lab. In cases when one
also needs a well-behaved second derivative, the above expression may be
modified further to

us(r) =

{

uLJ(r)− uLJ(rc) + (rc − r) duLJ

dr

∣

∣

rc
, r < rc,

0, r > rc.

1.3 Periodic boundary conditions

The simulations always take place in a simulation cell of finite extension.
The questions then arises what do to with the walls. To just let the particles
disappear when they reach the boundary would be disastrous and to let the
particles bounce off the wall isn’t any ideal method either. The best method
is to use periodic boundary conditions. To visualize how that works one can
think of several identical simulation cells placed one after the other with the
same particles. This is however only a mental picture, in the simulations
each particle only exists once, but associated with each particle is an image
in each cell.

There are then a few consequences of this arrangement:

• When a particle leaves the system through a wall it simultanously enters
the system through the opposite wall. Each time a particle coordinate
changes one should therefore check if the new position is outside the cell,
x < 0 or x > L. If that is the case, the particle should be translated,
x+ L → x or x− L → x, to the interval [0, L).

• We only consider the interaction of a certain particle i with a single
image of each other particle j; it is the nearest image that should
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be used. (This applies to short range interactions. For long range
interactions there are different techniques.) To find the nearest image
one applies the following method for each of the directions x, y, and
z: calculate xij = xi − xj , if |xij | > L/2 either add or subtract L such
that |xij | < L/2. The distance vector is then

rij = (xij , yij, zij).

• The nearest image convention also has implications for the smallest
possible size of the simulation cell: The method may only be used
consistently if each given particle has at most one image within the
range of the interaction, which means that the linear size should always
be L ≥ 2rc.

1.4 Integration method and time step

The basic equations we want to integrate numerically are

ṙ = v,

mv̇ = F.

A good integration method should have time reversal symmetry. One possi-
bility is velocity Verlet and another one is the leap-frog method where posi-
tions and forces are defined at times t = n∆t whereas velocities are defined
at the intermediate times, t = (n+ 1/2)∆t. With the notation rn ≡ r(n∆t),
and similarly for force and velocity, we have

vn+1/2 = vn−1/2 + (1/m)Fn∆t,

rn+1 = rn + vn+1/2∆t.

A given simulation method is only numerically stable for a certain range of
∆t. Beside this one should consider criteria based on the physical system in
consideration. In the present case this means that we can only expect a good
precision if the steps are such that the change in interaction potential in a
single step is small. If the interaction potential changes on the scale ℓ, this
implies that the time step ∆t should be chosen such that

√

〈v2〉 ∆t ≪ ℓ, or ∆t ≪ ℓ

√

m

T
.

One should test the simulations with different time steps and choose a time
step in the range where the measured results only depend very weakly on ∆t.
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2 Stochastic differential equation— Langevin

dynamics

Langevin dynamics was first invented to simulate bigger molecules in a sol-
vent with a large number of smaller molecules. The idea was to include the
effect of these smaller molecules in an average way instead of keeping track of
all the collisions. This can mean a huge speed up because (1) a large fraction
of the molecules may be eliminated from the calculations, and (2) the heavier
molecules typically move more slowly, which means that one can do with a
bigger time step in the simulations.

However, in most cases one uses Langevin dynamics for other systems
than mixtures of bigger and smaller molecules and the method is then mostly
a way to implement a thermostat.

For Langevin dynamics one adds two terms to the simulations beside the
ordinary ones from molecular dynamics: a random force and a friction term.
The first term adds energy into the system whereas the second term has the
effect to dissipate energy. The equation of motion then becomes

mv̇ = F− αv + ζ. (7)

where ζ is a vector noise.
We will shortly examine how the magnitude of ζ should be chosen to

do a simulation at a desired temperature, but before doing that we need to
consider how the noise should be treated.

2.1 Properties of the noise

Each component of the noise is an independent random process with 〈ζ(t)〉 =
0 and the correlation between ζ at times t and t′ given by the δ function,

〈ζ(t)ζ(t′)〉 = Aδ(t− t′).

It becomes clear that this noise process has very unusual properties as it
jumps infinitely quickly between minus and plus infinity. To remedy the
uneasy feeling one gets when contemplating this process, we instead consider
a time interval ∆ and the average noise during that time interval:

ζ∆(t) =
1

∆

∫ t+∆

t

dt′ζ(t′).
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It its then possible to calculate the expectation value, 〈ζ2∆〉, which shows that
the amplitude of the noise depends on the time interval ∆ in an unusual way:

〈ζ2∆〉 =
1

∆2

∫ t+∆

t

dt′
∫ t+∆

t

dt′′〈ζ(t′)ζ(t′′)〉

=
1

∆2

∫ t+∆

t

dt′
∫ t+∆

t

dt′′Aδ(t′ − t′′) =
A

∆
.

The amplitude of the noise is thus bigger when the time step is smaller.

2.2 Magnitude of the noise

We are then ready to consider how the amplitude of the noise should be
chosen. The key is to note that Eq. (7) contains both a damping term −αv
that dissipates energy and the noise term ζ that adds energy. In equilibrium
they should cancel each other out. The requirement is therefore that the
noise should be chosen such that the expectation value of the kinetic energy
doesn’t change with time.

In one dimension and in the absence of external forces Eq. (7) gives

mv(t+∆t) = mv(t)− α∆tv(t) + ∆tζ.

In equilibrium 〈mv2〉 at times t+∆t and t should be the same:

m2〈v2(t+∆t)〉 = (m− α∆t)
2〈v2(t)〉+∆2

t 〈ζ
2〉. (8)

To first order in ∆t this leads to the requirement

0 = −2mα∆t〈v
2(t)〉+∆2

t 〈ζ
2〉.

(Note that the second term, in spite of appearance, is to first order in ∆t

since 〈ζ2〉 ∼ 1/∆t.) This tells how to choose the magnitude of the noise,

〈ζ2〉 =
2mα〈v2(t)〉

∆t
,

and together with m〈v2〉 = T this finally becomes

〈ζ2〉 =
2αT

∆t

. (9)
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2.3 Effects of the damping α

When using Langevin dynamics as a way to implement a thermostat it is
interesting to examine how a change in α affects the system. It turns out
that the static, i.e. time-independent, quantities remain the same independent
of α whereas the time-dependent quantites are affected. This means that if
we consider snapshots only, and quantities that may be determined from
snapshots, there is no way to tell what α was used in the simulation. If we,
on the other hand, make a movie of the motion of a single particle we would
see a clear difference.

One can understand this if one considers a dilute gas where the particles
collide only seldom. In molecular dynamics (or in Langevin dynamics with
very small α) the particles would then move in straight lines between abrupt
collisions. On the other hand, if α is sizable the noise would make the
particles deviate from the straight line behavior more or less all the time.

2.3.1 Time-dependent correlations

A good example of a time-dependent correlation function is the velocity au-
tocorrelation function, which essentially measures how long a particle moves
in the same direction. The definition is

gv(t) = 〈vi(t
′ + t) · vi(t

′)〉,

where the expectation value is meant as an average over all particles i, and
many initial times, t′. The velocity autocorrelation function is important
for the behavior of the system which e.g. can be seen by the relation to the
diffusion constant.

At long times the particles diffuse around with

〈(r(t′ + t)− r(t′))2〉 = Dt, (10)

and it turns out that this constant—the diffusion constant, D—is related to
the velocity autocorrelation function through

D =

∫ ∞

−∞

gv(t)dt. (11)

2.3.2 Static quantities – the pair correlation function

A useful quantity to probe static properties is the potential energy, which
should be independent of α for sufficiently small time steps. More detailed
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information about the behavior of the gas may be found in the pair correlation
function, g(r). The definition of g(r) is

The probability to find a particle at r, granted that there is a
particle at the origin.

To calculate g(r) one collects a histogram over particle separations, h(r),
with resolution ∆r. In two dimensions the relation between h(r) and the
pair correlation function is

h(r) = 2πr g(r)∆r,

which is inverted to get g(r). At large distances g(r) becomes equal to the
density, whereas the behavior at short distances shows a peak at r ≈ rmin

(c.f. Eq. (2)), and possibly some more peaks at larger distances.

2.3.3 The time step and the damping

We finally consider the relation between α and the acceptable values of ∆t.
It turns out that we have to decrease the time step when increasing α to

avoid introducing errors in the results. To show this we keep terms propor-
tional to ∆2

t in Eq. (8). This gives

m2〈v2(t+∆t)〉 = (m2 − 2mα∆t + α2∆2
t )〈v

2(t)〉+∆2
t 〈ζ

2〉.

Assuming a time-independent kinetic energy, 〈v2(t+∆t)〉 = 〈v2(t)〉, we find

〈v2〉(2mα∆t − α2∆2
t ) = 2αT∆t,

which gives

〈v2〉 =
T

m− α∆t/2
.

This estimate shows that the error depends on α∆t, which means that one
needs smaller time step when the damping is larger.
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3 Brownian dynamics

In the Langevin equation of motion, Eq. (7), the friction term introduces a
time scale, m/α. To see this, consider a single particle in one dimension that
initially moves with velocity v(0). The dynamics mv̇ = −αv gives

v(t) = v(0)e−t/(m/α) + noise.

Beside the noise—which has zero average—there is thus an exponential decay
with the time scale m/α. (Note that this is for a single particle; in the
presence of other particles the collisions will also affect the behavior.)

Consider now the limit where this time scale is very small: If m/α ≪ ∆t

the velocity decays quickly to zero and the dynamics is if there were no
inertia—so called overdamped dynamics. One way to approach this limit
would be to take m → 0 and Eq. (7) then becomes

0 = F− αv + ζ, ⇒ v =
1

α
F+

ζ

α
.

In a dynamics where the velocity is quickly damped out there is no need
to remember the velocity and one can turn to a description with only the
position coordinates. This then becomes

ṙ =
1

α
F+ η,

where the components of the noise variable are now characterized by

〈η2〉 =
2T

α∆t

.

3.1 The Fokker-Planck equation

From the above sketchy motivation the Brownian dynamics is only expected
to be valid in rather special cases. We now want to demonstrate that Brow-
nian dynamics actually is of more general validity and is always expected to
give the correct equilibrium distribution, Eq. (4), in the limit of small ∆t.

To simplify the notation we consider a particle in a one dimensional po-
tential U(x) at temperature T . We then require that the distribution should
be

P (x) ∝ e−U(x)/T .
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3.1.1 Derivation of the Fokker-Planck equation

Consider starting from some probability distribution P (x, 0) at time t = 0.
The change to this distribution with time comes from two terms:

P (x,∆t) = P (x, 0) −

∫

dx̃ D(x− x̃,∆t|x, 0) P (x, 0)

+

∫

dx̃ D(x,∆t|x− x̃, 0) P (x− x̃, 0). (12)

The first integral contains D(x − x̃,∆t|x, 0) which describes the dynamics
and is the probability that the particle which was at x at t = 0 is at x− x̃ at
time ∆t. The second integral is the probability that the particle originally
at x− x̃ will be found at x at time ∆t.

The first integral is simplified with the use of
∫

dx̃ D(x− x̃,∆t|x, 0) = 1, (13)

which is just a statement that the particle originally at x has to be somewhere
a time ∆t later. With ∂P (x, 0)/∂t ≈ [P (x,∆t)− P (x, 0)]/∆t one finds

∂P (x, 0)

∂t
∆t = −P (x, 0) +

∫

dx̃ D(x,∆t|x− x̃, 0) P (x− x̃, 0).

With
f(x) = D(x+ x̃,∆t|x, 0) P (x, 0),

this is
∂P (x, 0)

∂t
∆t = −P (x, 0) +

∫

dx̃ f(x− x̃).

With the expansion

f(x− x̃) =

∞
∑

n=0

(−x̃)n

n!

∂n

∂xn
f(x),

the equation becomes

∂P (x, 0)

∂t
= −

P (x, 0)

∆t

+
∑

n

(−1)n

n!

∂n

∂xn

[

P (x, 0)
1

∆t

∫

dx̃ x̃nD(x+ x̃,∆t|x, 0)

]

≈ −
∂

∂x
[P (x, 0)M1] +

1

2

∂2

∂x2
[P (x, 0)M2] , (14)
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where

Mn =
1

∆t

∫

dx̃ x̃nD(x+ x̃,∆t|x, 0), (15)

and the n = 0 term in the sum cancels the P (x, 0) term. Eq. (14) is the
Fokker-Planck equation.

3.1.2 Application of the Fokker-Planck equation

We now want to use Eq. (14) to find the stationary probability distribution
for a particle in a one dimensional potential U(x) at temperature T , governed
by Brownian dynamics. To that end we need to evaluate the integrals over
D(x+ x̃,∆t|x, 0) which are related to the dynamics,

x(∆t) = x(0) +
∆t

α
F + η∆t.

The dynamics may be written as a delta function,

D(x+ x̃,∆t|x, 0) = δ

(

x+
∆t

α
F + η∆t − (x+ x̃)

)

= δ

(

∆t

α
F + η∆t − x̃

)

.

The relevant quantities are M1 and M2 averaged over the random noise:

Mn =
1

∆t

〈
∫

dx̃ x̃n δ

(

∆t

α
F + η∆t − x̃

)〉

=
1

∆t

〈(

∆t

α
F + η∆t

)n〉

.

Using F = −∂U/∂x, 〈η〉 = 0, and 〈η2〉 = 2T/α∆t we get, to lowest order in
∆t,

M1 = −
1

α

∂U

∂x
and M2 =

2T

α
.

3.1.3 Stationary solution

We now want to demonstrate that P ∝ e−U/T is the stationary solution to
the F-P equation, i.e. that it gives ∂P/∂t = 0. We then plug in

P ∝ e−U/T ,
∂P

∂x
= −

1

T

∂U

∂x
P,

∂2P

∂x2
=

[

1

T 2

(

∂U

∂x

)2

−
1

T

∂2U

∂x2

]

P,

at the right hand side of Eq. (14). It is seen from inspection that the terms
cancel one another out

−

(

1

T

∂U

∂x
P

)(

1

α

∂U

∂x

)

+ P

(

1

α

∂2U

∂x2

)

+
T

α

[

1

T 2

(

∂U

∂x

)2

−
1

T

∂2U

∂x2

]

P = 0,
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and the conclusion is that P ∝ e−U/T is the stationary solution to the Fokker-
Planck equation with Brownian dynamics.

3.1.4 Stochastic differential equations and Monte Carlo

The next section is about Markov chain Monte Carlo which is a method
to generate configurations from arbitrary distributions (e.g. e−U/T ), but we
already state the important result that a simulation of a stochastic differen-
tial equation is equivalent to a Monte Carlo simulation as far as the static
quantities are concerned.
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4 Markov chain Monte Carlo

The theoretical treatment of Monte Carlo simulations starts from the concept
of a Markov chain but since this is very general and rather abstract we will
instead start by introducing Monte Carlo by considering how the method is
used for simulating a gas. We will then turn to the formulation in terms of
Markov chains, with the example of a gas as a useful point of reference.

4.1 Monte Carlo for an interacting gas

4.1.1 One sweep

In the standard implementation one loops over the particles, i = 1, . . . N :

1. Suggest a change of the position of particle i:

r′i = ri + δi,

where the δ
(x)
i , δ

(y)
i , and δ

(z)
i , usually are from a rectangular distribution

centered around zero, ∈ [−b, b).

2. We now let ν to denote the initial configuration and µ the configuration
where particle i is at r′i. Calculate the energy difference ∆U = Uµ−Uν

and the acceptance probability, from Eq. (18),

αν→µ = min
(

e−∆U/T , 1
)

.

3. Accept this new position with probability αν→µ, i.e. generate a random
number ξ ∈ [0, 1) and accept the change if ξ < αν→µ.

4.1.2 Remarks

To get a reasonably efficient simulation the range of the suggested changes
δi should be chosen such that the acceptance ratio is not too far from 50%,
say between 30 and 70%.

Note also that there is no need to calculate the full potential energy (from
∑

i<j u(rij), which is a computation of order N2) to compute the change in
energy due to the change in position of particle i. One may instead use

∆U ≡ Uµ − Uν =
∑

j

[u(r′i − rj)− u(ri − rj)],

which is a computation of order N and therefore much faster.
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4.2 Markov chains

To explain why the above works we now turn to a mathematical formulation
in terms of Markov chains. This is an abstract formulation which is meant
to work for all kinds of variables but it could be helpful to think of the
concrete example we have discussed above. Also note that the matrices that
are discussed below are never used as such in a computer. They are simply
much too big for that to be possible.

Suppose now that there is a finite number of possible configurations or
multidimensional variables x(ν). A Markov chain is a random chain of these
variables, x1, x2,. . . produced by means of a transition matrix pνµ with the
following properties:

1. pνµ ≥ 0,

2. pνν 6= 1,

3.
∑

µ pνµ = 1 for all ν.

Note that (1) is necessary since probabilities have to be non-negative, (2)
means that the chain may never come to a halt, and (3) means that the total
probability to go to some state must always be equal to unity.

If the system is left to perform a random walk according to these transi-
tion probabilities and we can be guaranteed that the chain is ergodic—that
we are not stuck in a limited region of the phase space— this will lead to a
certain probability distibution πν ≡ π(x(ν)). This is a profound result which
makes Markov chains very useful. We have here for simplicity assumed a
discrete set of possible configurations but Markov chains may also be defined
for the more general case of a continuous configuration space.

4.3 Construct the transition matrix

The task is now to choose the transition matrix for the Markov chain such
that a certain probability distribution π(x) is obtained. A sufficient (but not
necessary) condition is to require detailed balance, i.e.

πνpνµ = πµpµν . (16)

That this gives the required probability distribution may be seen by consid-
ering the probability to be in state µ after a given step, which is

∑

ν

πνpνµ = πµ

∑

ν

pµν = πµ.
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We have here made use of the detailed balance condition followed by condi-
tion (3) above.

The transition probability may be thought of to consist of two parts. We
write

pνµ = qνµανµ,

where

qνµ = probability for the transition to be suggested

ανµ = probability for the transition to be accepted

To connect back to our configurations in Sec. 4.1 we note
that in that case qνµ is non-zero only for a very small subset
of all possible configurations µ, i.e. the configurations with
r
(µ)
i = r

(ν)
i for N − 1 particles and r

(µ)
i = r

(ν)
i + δi for the

remaining particle. Here δi = (δ
(x)
i , δ

(y)
i , δ

(z)
i ) where δ

(x)
i , δ

(y)
i ,

and δ
(z)
i are from a rectangular distribution centered around

zero.

Detailed balance may e.g. be fulfilled with the following choice for ανµ:

ανµ = min

(

1,
πµqµν
πνqνµ

)

(17)

The Metropolis algorithm

One often has a symmetric targeting probability qνµ = qµν ,

This is the case with the algorithm in Sec. 4.1. If the step ν →
µ is possible the reverse step µ → ν is always possible, and
equally likely to be suggested, as the step ν → µ. This follows
since each of the components of δi are from a rectangular
distribution centered around zero.

and the acceptance probability then simplifies to

ανµ = min

(

1,
πµ

πν

)

, ν 6= µ. (18)

This is the choice in the Metropolis algorithm.
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We will now explicitely demonstrate that the choice of ανµ according to
Eq. (18) actually does fulfill detailed balance, i.e. that it fulfills πνpνµ =
πµpµν . To make this simple we show it for the case q = qνµ = qµν ; it is
straightforward to show the general validity of the result.

πνpνµ = πνq ανµ = πνq min

(

1,
πµ

πν

)

= q min(πν , πµ).

πµpµν = πµq αµν = πµq min

(

1,
πν

πµ

)

= q min(πµ, πν).

The equality of these expression demonstrates that detailed balance actually
is fulfilled.

4.3.1 Requirements for a valid Monte Carlo method

Many different methods have been proposed for doing Monte Carlo in all
kinds of models. To prove that a method is correct one needs to show that
two conditions are fulfilled:

1. The simulation is ergodic, i.e. that it is possible to reach any state
through a finite number of steps.

2. That the Monte Carlo steps fulfill detailed balance, Eq. (17).

4.4 Monte Carlo and expectation values

We now consider the numerical calculation of expectation values. The defi-
nition of the expectation value of a quantity A is

〈A〉 =
∑

ν

AνPν ,

where Pν is the probability for the system to be in state ν. For an interacting
gas this kind of formula cannot be used directly since there is a continuum
of states2 We are then bound to generating a limited number of states, and
this may mainly be done in two different ways:

2In systems where the states constitute a discrete set, they are typically far too many

for this sum to be performed on a computer.
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• Generate n configurations, {r(ν)}, for ν = 1 . . . n, randomly, with the

r
(ν)
i independent of one another. The expectation value is then

〈A〉 =

∑n
ν=1Aνe

−Eν/T

∑n
ν=1 e

−Eν/T
, (19)

However, attempting to do this, one will find that most configurations
have a rather large energy and therefore a very small Boltzmann fac-
tor, e−Eν/T . This means that most of the configurations contribute a
negligable amount to the sums. The reason for this is that there is
a high probability for at least one pair of these randomly generated
particles to be very close to one another, which is enough to give the
configuration a very high energy. This means that the configurations
typical of low temperatures will almost never show up, which has dis-
astrous consequences for the possibility to calculate the properties at
most temperatures of interest. Except for very small systems this is
therefore an entirely impracticable method.

• Use Markov Chain Monte Carlo to generate the configurations with
a probability πν ∝ e−Eν/T . The expectation values should then be
calculated as a direct average,

〈A〉 =
1

n

n
∑

ν=1

Aν . (20)

This is a useful method that allows for a simple calculation of many
quantities that would otherwise be very difficult—if not altogether
impossible—to calculate. The only drawback is that the configurations,
and thereby the Aν , are not independent of one another. One there-
fore needs to perform simulations for times that are very much longer
than the memory of the system to get a large number of independent
configurations.

4.4.1 Program structure

The program usually consists of a few different parts:

1. Initialization – Assign initial values to the positions in some way.
Common alternatives are just random values or to read in the positions
of an earlier run from a file.
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2. Equilibration – We have to allow for some time before the Markov
chain starts to produce configurations according to the correct proba-
bility distribution. This is achieved by calling the mc update routine a
(often fairly large) number of times. (This is often called “thermaliza-
tion”.)

3. Production – The actual run when data are collected. Results could
also be written to a data file for later analysis. The below is a good
structure for the simulation. In this example val, vblock, v1sum, and
v2sum are structured variables with fields as epot and pressure.

for iblock =... nblock {

vblock->epot = 0.0;

for isamp = ... nsamp {

mc_update(pos);

measure( , pos, val);

vblock->epot += val->epot; // the same also for other quantities

}

write_data(vsum);

write_conf(pos);

v1sum->epot += vblock->epot;

v2sum->epot += vblock->epot * vblock->epot;

}

4. Print out results – The averages are obtained from v1sum. With
v2sum it also becomes possible to determine the standard error.
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5 The lattice gas and the Ising model

As already mentioned it is common with models that are defined on a lat-
tice instead for on the continuum. An important reason for discretizing the
system is that the computations then may be much simpler and thereby also
considerably faster. It is immediately clear that a lattice model of a gas can-
not reproduce all results from the continuum, but it turns out that certain
features are not sensitive to the details of the model and if the goal is to
examine such properties, the lattice model is superior to the continuum gas.

5.1 Coexistence region and the critical point

The gas changes to a liquid at temperatures and densities where the attractive
interaction becomes important. Roughly speaking it prefers the liquid state
for temperatures T < ǫ. (Recall that the energy at the minimum is −ǫ).
One way to examine this transition is to start from the gas phase and then
decrease the volume at a fixed temperature. At a certain specific volume
(volume per particle or volume per mol) there appears a small volume with
a higher density – a liquid. We say that we have coexistence between liquid
and gas, the region in parameter space where this is possible is called the
coexistence region. The specific volume of the gas, vgas, is then higher than
the specific volume of the liquid, vliq. As the total volume decreases further,
the liquid fraction increases further and the gas phase eventually disappears.
This process takes place at a given constant pressure.

If the same process is repeated at different temperatures (and pressures)
one finds that the difference in specific volume,

∆v = vgas − vliq,

decreases when the temperature increases and actually vanishes at a given
temperature, the “critical temperature”, Tc. This is one of the coordinates
that describe the “critical point”, the other are vc and pc. When approaching
the critical temperature the volume difference vanishes with a power law,

∆v ∼ (Tc − T )β,

where β ≈ 0.3 is a “critical exponent”. In the region close to the critical point
there are large regions with a lower density coexisting with other regions with
a higher density. This is a behavior that is both difficult to analyze with
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analytical methods and difficult to study with high precision in simulations.
It turns out that one may capture this behavior much more efficiently by
using a different model for simulation of the gas – the lattice gas.

5.2 The lattice gas

In the lattice gas we give up the continuum and instead let the particles sit
on a lattice. This is a good idea if we want to capture the behavior at large
length scales, though it of course doesn’t reproduce the properties at small
scales.

The variables in the lattice gas are ni = 0, 1, corresponding to the presence
or absence of a particle at lattice point i. The repulsion is given by the fact
that two particles cannot be on the same lattice point and the attraction is
given by assigning the energy −ǫ for each neighboring pair of particles. The
energy for a certain configuration is then

E = −ǫ
∑

〈ij〉

ninj,

where
∑

〈ij〉 denotes a sum over all nearest neighbors. Unlike the models
we have discussed so far, the number of particles is not a constant in this
model. The large collection of states which is possible when both energy and
number of particles vary is called the grand canonical ensemble and one also
introduces a chemical potential µ that controls the particle number, much
as the temperature controls the fluctuating energy. The Boltzmann factor is
then complemented by another term with the effect to keep 〈n〉 down.

5.3 The Ising model

The Ising model is usually thought of as a model of a magnet. This is in
many ways similar to the lattice gas, the variables (the “spins”) are now
si = ±1, corresponding to spin up and spin down. The energy for the Ising
model is3

E = −ǫ
∑

〈ij〉

sisj.

3It is also common to consider the effect of an applied magnetic field, this is included

by adding the term −h
∑

i
si to this expression for the energy.
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The Ising model has been called the Drosophila4 of statistical mechanics be-
cause it has been so thoroughly studied and manipulated in all conceivable
ways. One can put this model on lattices in different dimensions, D = 1,
2, 3,. . . , and it turns out that the behavior changes dramatically with the
dimensionality. The behavior in one dimension is easy to calculate analyti-
cally. The properties of the phase transition in 2D is terribly more difficult to
calculate. This problem was solved by the norwegian physicist Lars Onsager
in 1944—an impressing tour de force, which by some is considered one of the
greatest scientific achievements of the 20th century. The behavior in 3D is,
in turn, immensely more complicated and continues to attract researchers
from both physics and mathematics.
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