
UMEÅ UNIVERSITY September 30, 2024

Department of Physics

Modeling and Simulation, 7.5hp

Molecular Dynamics,

Stochastic simulations,

and

Monte Carlo

Peter Olsson

Miscellanous comments

• The following instructions are intended to be used for a Ubuntu/Linux
system. If you are in the computer lab you might need to restart the
computer. It will then automatically boot into Ubuntu.

• Open up the lab instructions from the browser and open up a terminal
which is what you run the program from. You will now be able to
copy things directly from the lab instructions to the terminal. Note
that copying text is done by just pressing and moving the left mouse
button, nothing more. To paste the content to the terminal: Move
the mouse over the terminal, activate the terminal by left-klicking and
paste by pressing the middle mouse button.

• Send the report through Canvas.

• Provide a path to the relevant code on the computers, or make it avail-
able by some other means.

• Note that there are some voluntary excercises that may give bonus
points. The bonus points are determined on the basis of the first version
of the lab report and are only considered if the report is handed in
before deadline.

• There are functions in ran.c for getting different kinds of random num-
bers.

0

1 Introduction

A gas of particles is a very important system in physics. If the density
is low, one can neglect collisions between particles. When that is a good
approximation we say that the gas behaves like an ideal gas and is then well
described by the ideal gas law,

pV = NkBT,

which is a relation between pressure p, volume V , number of particles N ,
temperature T , and Boltzmann’s constant, kB ≈ 1.38× 10−23 Joule/Kelvin.

1.1 Interaction

The fact that gases liquify at higher densities is due to interactions between
the molecules. This interaction is repulsive at short distances and attractive
at somewhat larger distances and is commonly modelled with the Lennard-
Jones interaction,

U(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

. (1)

Here the length σ and the energy ǫ are material parameters. We will however
use units such that they are both equal to unity. The force between the
particles is given by F = −dU/dr. A positive sign means a repulsive force.

F (r) =
ǫ

r

[

48
(σ

r

)12

− 24
(σ

r

)6
]

. (2)

The above expression gives the magnitude of the force; to capture the vector
nature we write (in two dimensions)

F = −∇U = −
dU

dr
= −

dr

dr

dU

dr
= −

(

dr

dx
,
dr

dy

)

dU

dr
=

(x

r
,
y

r

)

F (r). (3)

The last equality follows from differentiation of r2 = x2 + y2 which gives

r dr = x dx+ y dy.

1

1.2 Molecular dynamics

The dynamics of a system with N particles is governed by two coupled dif-
ferential equations,

ṙi = vi,

mv̇i = Fi,

where Fi is the sum of the forces acting on particle i due to the interaction
with the other particles. In the simulations this should be integrated with
a small time step, ∆t, and with the notation v

(n)
i = vi(n∆t) the leap-frog

method becomes

v
(n+1/2)
i = v

(n−1/2)
i +

1

m
F

(n)
i ∆t, (4)

r
(n+1)
i = r

(n)
i + v

(n+1/2)
i ∆t. (5)

We will use simulation units which means that we set σ = 1, m = 1, ǫ = 1
and kB = 1, and let kBT → T .

2 A program for Molecular dynamics and

Langevin dynamics

We are here going to simulate interacting particles in two dimensions. An
important reason for looking at this problem in two dimensions is that it
then becomes much easier to visualize the configurations. This is also one of
the voluntary exercises.

Your task is now to complete an almost finished program.1 The first
step is to look through the program carefully to understand how it is meant
to work. Check both the Makefile and all the source files. This is also a
good opportunity to learn a few programming tricks. The program begins
(as always) in the main function which is at the bottom of sim.c.

1Some of you could prefer to instead write everything from scratch and would perhaps
also do that successfully. This exercise could anyway be a good one since the modification
of an existing code is more common than writing things from scratch, which means that
there is a fair chance that you will be asked to modify an existing program in your coming
professional activities.

2

2.1 Getting the code

Open a terminal by pressing Ctrl-Alt-t, make a new directory

$ mkdir LabStoch

and go to that directory by writing

$ cd LabStoch

Quite a few files are needed to complete this lab and they are stored in a
compressed archive at www.tp.umu.se/modsim/files/LabStoch.tgz. The
command line can be used to download this file (though it can of course also
be done with a web browser):

$ wget www.tp.umu.se/modsim/files/LabStoch.tgz

To get all the files together with some directories, execute2

$ tar xzf LabStoch.tgz

which is the command to extract the content from the gzipped (compressed)
tar f ile. To see what files and directories are present type

$ ls -l

which gives a listing of the directory. In the following you should edit files
in src and compile in lang.

2.2 Completing the code

Note that appendix A gives a short introduction to the program.
Follow the steps below to convince yourself that your program is correct.

In the source code the incomplete sections are marked with “Fix this (1)”,
where the numbers, 1–5, correspond to the numbers below. This part is only
to become familiar with the workings of the program and should not be
included in the report.

For editing the source code with the standard text editor, gedit, type

2In computing, tar (derived from tape archive) is both a file format (in the form of a
type of archive bitstream) and the name of the program used to handle such files. “.tgz”
is the same as “.tar.gz” – a gzipped tar file.

3

$ gedit src/sim.c &

This will open a new window that shows sim.c. The & character is needed to
be able to continue using the terminal for other commands. The shell (which
is the program running in the terminal and accepting input) will otherwise
wait for gedit to terminate before showing the prompt, ”$”, which shows
that it accepts input. Then go to lang

$ cd lang

to be ready for the following steps:

1. Complete the function measure (in sim.c) which is necessary to per-
form the measurements in the program. Appendix A gives some in-
formation about the layout of the array atoms used for storing both
position and velocity coordinates. Compile the program by typing make
in the terminal. If you now do “$ ls -l” you will see that there is
now a file sim which is “executable” which is the meaning of the “x”
in “-rwxr-xr-x”. Now run the program by typing

./sim N=64 rho=0.5 T=1.0 read=0064_r0.500_T1.000_start run

The program should now give the energies for the starting configura-
tion:

Potential energy = -1.33933

Kinetic energy = 1.04104

Note that these are intensive values, energy per particle.

2. Next, remove the exit(EXIT SUCCESS) in sim.c that terminated the
program. Study the function step and complete force_magnitude

and one_force in common.c by using the equations above. Also fix the
function vel_from_force to implement the leap-frog method. To do
this you will have to look through the program to understand how it
is intended to work.

If not specified otherwise the friction parameter is α = 0, which means
that the program by default does molecular dynamics. With the same
command line as before you should now get the following output for
the positions and velocities for particle number 0:

4

x, y, vx, vy = 3.78663 9.78626 -0.299201 -1.60687

3. Remove the print statement for x, y, vx, vy = ... and the exit

statement. The program will then instead run par->ntherm units of
time for equilibrium. The program should now be ready for long runs.

4. We want both averages and standard errors from the collected data and
that is prepared for in the code. Note the meaning of v1sum[], and
v2sum[] and complete the function print_standard_error to print
out the mean and the estimated standard error according to the fol-
lowing formulas:

X =
1

nblock

∑

i

xi, X2 =
1

nblock

∑

i

x2
i , stderr(X) =

√

X2 −X2

nblock − 1
.

This is a quantity that decreases when the run is longer, i.e. the number
of blocks is bigger.

It is also sometimes interesting to determine the typical size of the
fluctuations which is given by

√

X2 −X2.

As this is a measure of the size of the fluctuations it shouldn’t (and
doesn’t) decrease with an increasing number of blocks.

5. The program should now perform (deterministic) Molecular dynam-
ics. To change this to the stochastic Langevin dynamics you need to
complete langevin_forces (in common.c). You should then let the
random number ζ in each direction be given by CLang × ξ± where ξ±
is from a uniform distribution between −1 and 1. This is the kind
of random number returned by dran sign(). Note that 〈ξ2

±
〉 = 1/3.

Adjust CLang to get the correct magnitude of the noise (see Sec. 3.2 for
details) and run the program with α = 0.1 to check that the kinetic
energy per particle is equal to T , which is T/2 per degree of freedom
(= dimension). If that is not so, please contemplate the meaning of
〈ξ2

±
〉 = 1/3, before asking the lab tutor.

The program should now be ready for the two following exercises.

5

3 Exercises

3.1 Molecular dynamics and the time step

In molecular dynamics it is important to check that the time step is not too
big. To that end one looks at the total energy which should be a constant.
Do a number of runs, starting from conf/0064_r0.500_T1.000_start, with
α = 0 and time steps, ∆t = 0.006, 0.008, 0.010, 0.012 0.014, 0.016, 0.018,
and 0.020. Use at least 50 blocks (nblock=50) in each run. Consider both
stability and precision. The files in directory efile contain columns with
time and total energy per particle, E = (U +K)/N .

Exercise 3.1:

1. What happens for large time steps?

2. Show the data for all but the largest time steps by plotting
the total energy per particle vs ∆t. Show the standard errors
with error bars.

3. There could be a spurious dependence of energy on ∆t, in
your data, which is due to the fact that energy is not con-
served exactly, which means that the temperature is chang-
ing. (This is in contrast to e.g. Langevin simulations which
have an built-in thermostat that keeps the temperature at
the desired value.) To examine if this dependence could
explain the different E for different ∆t, determine the tem-
perature from the kinetic energy per particle, T = K/N ,
and plot E vs T .

4. Based on this study, what is a reasonable time step to used
in the following?

Comment on the result.

6

3.2 Langevin dynamics – the effect of a finite α

In Langevin dynamics the total energy fluctuates and it is interesting to
examine how these fluctuations depend on α. In this dynamics both damping
and noise give changes to the velocity:

mvi(t+∆t) = mvi(t) + (Fi − αvi + ζi)∆t. (6)

Here ζi is a vector noise where each component has the magnitude

〈ζ2〉 =
2αT

∆t
.

Exercise 3.2: The question in focus is now what changes and
what remains the same when we change α. Do runs with α =
0.01, 0.1, and 1.0, density ρ = 0.6 and temperature T = 1.0 and
plot energy vs time. Remove the statement
read=conf/0064_r0.500_T1.000_start, since that is meant to
work with ρ = 0.5. It is now OK with shorter runs, say 10 blocks.
We take ∆t = 0.01 which gives a good precision (as shown above),
and is also the default value of the time step in the code. Consider
both the size and the velocity of the energy fluctuations:

1. Use the data in the files in directory efile to calculate the
size of the fluctuations from

σE =
√

〈E2〉 − 〈E〉2.

Do the size of the fluctuations in energy change with α?
What do you expect from theory? (For small α it might be
necessary to do longer runs to get a good picture of the size
of the fluctuations.)

2. For this examination you will then need to change the writ-
ing to the the energy file (efile) such that it happens
after each measurement. In the given code it is only ev-
ery 100th measurement which is written to file. This is
the effect of “if (isamp % 100 == 0)” before the call to
energy_print. Usually we do, however, not like to print
each measured energy value to file, as it produces big files.

Plot E vs t. Comment on the energy fluctuations—are they
rapid or slow?—and relate them to the fact that m/α has
the dimension of time.

7

4 Brownian dynamics

Go to directory brown to use for Brownian dynamics and copy the files:

$ cd ..

$ cp lang/define.h lang/Makefile brown

$ cd brown

You then need to change in the new define.h:

• Remove #define VEL since Brownian dynamics only operates on the
positions.

• Instead include #define BROWN which should be used in the code (mostly
in the function step in common.c) for selecting statements to use for
Brownian dynamics.

The dynamics is given by

ri(t+∆t) = ri(t) + Fi
∆t

α
+ ηi∆t,

where each component of the noise is characterized by

〈η2〉 =
2T

α∆t
.

As a quick test that the program is correct, check that the obtained potential
energy when using α = 10.0 and ∆t = 0.001 gives about the same results as
the Langevin program.

5 Monte Carlo

The last exercise is to make another program that does Monte Carlo. Go
to the mc directory, copy define.h and Makefile, and put #define MC in
define.h.

The changes to implement Monte Carlo will mainly be to write a function
that performs a Monte Carlo sweep. Note that you should also keep track
of the acceptance ratio and that you will need the parameter b that specifies
the maximum distance to move the particles.

A Monte Carlo sweep is done by looping over the particles i and for each
i do the following operations:

8

1. Suggest a new position: r′i = ri + bδ, where δ is a random vector.

2. Use ν for the original configuration and µ for the suggested one, and
calculate the energy difference ∆U = Uµ − Uν and

αν→µ = min
(

1, e−∆U/T
)

.

3. To accept with this probability, generate a random number ξ and accept
if ξ < αν→µ, which means that we let r′i be the new ri.

5.1 Comparison

We will now demonstrate that Brownian motion gives the same results as
Monte Carlo in the limit of small ∆t/α:

Exercise 5.1: Make a long run with the Monte Carlo program to
get good precision for the potential energy with the parameters
N = 64, ρ = 0.3, and T = 1.0. Run the Brownian dynamics
program with (α,∆t) = (10.0, 0.001), (10.0, 0.002), (10.0, 0.003),
and (10.0, 0.004). Plot the potential energy with error bars vs
∆t/α. Put the Monte Carlo data at ∆t/α = 0. Be sure to run
long enough to get reasonably precise data, which in this case
means that the statistical errors ought to be < 0.002. It should
be possible to see a clear trend in the data.

9

6 Voluntary exercises

For (at least some of) these voluntary exercises it could be convenient not
to write out the result from the simulations to the terminal, only, but to
also write them to files, e.g. in a directory res, with file names given by
the parameters, just as the final configuration is written to conf/filename.
When doing this, be sure to write both the parameters of the run and the
average values (and perhaps also the standard error) to the files and to make
files that are easily read into your plotting program (e.g. matlab).

6.1 Velocity correlation

Whereas static quantities—the ones that may be determined from configu-
ration snapshots—should be the same independent of α dynamic quantities
should be different for different α. The task is now to determine the velocity
auto-correlation function gv(t)

gv(t) = 〈vi(t
′) · vi(t

′ + t)〉, (7)

Exercise 6.1: Determine gv(0.0), gv(0.1), gv(0.2),. . . gv(5.0) at (1p)
ρ = 0.2 (a lower density than before), T = 1.0, and α = 0.01, 0.1,
and 1.0 and show them in the same plot.

Hints: Use a circular buffer to store the velocity vector for 50 earlier times and
create a file to write out the velocity correlations. It could be convenient to
put the functions for initialisation, accumulation, and for writing out results
related to the velocity correlation in a file vcorr.c together with a header
file vcorr.h, which should be included from both sim.c and vcorr.c

6.2 Different phases

At high temperatures (here, around or above T = 1) the system is a gas with a
uniform density. When the temperature is lowered the attractive interaction
starts to become more important and the particles prefer to be close to one
another. This will then lead to a denser region (a liquid) coexisting with the
region with lower density (a gas). The liquid is however about as disordered
as the gas. If the temperature is lowered even further the system will try
hard to get the lowest possible energy, which is obtained by forming an
ordered crystal. The transition between such phases may be studied with

10

advanced methods, but we will here just look at snapshots from the stored
configuration files.

Exercise 6.2: Do Monte Carlo at temperatures T = 1.0, 0.9, (1p)
0.8,. . . 0.1 on a larger system with N = 200 and ρ = 0.25. Be sure
to start the run at the lower temperature from the configuration
of the next higher one. Show representative pictures of (1) gas,
(2) gas-liquid coexistence, and (3) solid phase (well, gas-solid co-
existence), and try to approximately locate the phase transition
temperatures.

6.3 Pressure curves

The interactions make the pressure differ from the ideal gas law, which with
our units, with kB absorbed into the temperature, becomes p = NT/V = Tρ.
To get best possible precision, we here use Monte Carlo. Do rather long runs,
nblock=100, with N = 64 particles at temperatures T = 0.5, 0.6,. . . 1.0
and densities ρ = 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, and 0.80.
Note that the equilibrium state for some parameters at low temperatures
is a phase separated state, with regions of higher and lower density, which
could be difficult to reach. One therefore needs to use many sweeps for
thermalization (e.g. 10000) and also to use the stored configuration from a
higher temperature as a starting point for the next lower temperature. This
may be achieved with

./sim N=64 rho=0.500 T=1.000 read T=0.900 nblock=100 run

since the read command reads the configuration associated with T = 1.0
from an earlier run, if such a run has been done before.

Exercise 6.3: Plot p vs 1/ρ for T = 0.5 through 1.0. Also (1p)
include two dashed lines with pideal = Tρ for T = 0.5 and 1.0.

6.3.1 Running several simultaneous jobs

Below are some hints for speeding things up. You don’t need to follow them.

With 8 different densities and 6 temperatures these runs could be rather
cumbersome. Since modern computers typically have four cores it is however
possible to speed things up by running several jobs at the same time. (This
is even better done on the server, sesam, which has 12 cores. From the

11

computer lab, log in with “ssh sesam”.) To run several jobs at the same
time one can make use of the built-in loop feature in the bash shell. As a
simple demonstration try

for r in 0.15 0.20 0.25; do echo $r; done

In our case this can be combined with the line above to give (but change
“...” and keep it on a single line)

for r in 0.15 0.20 ... 0.80; do ./sim N=64 rho=0.$r

T=1.000 read T=0.900 nblock=100 run & done

(The construct “./sim...run & done” starts the runs in parallel. If one
had instead written “./sim...run ; done” the runs would be started se-
quentially, one after the other, which is not what we want.)

A drawback with this approach is that it mixes the output from the
programs. To avoid that one can redirect the output from each run to a
separate file:

for r in 0.15 0.20 ... 0.80; do ./sim N=64 rho=0.$r T=1.000

read T=0.900 nblock=100 run > log/0064-r${r}_T0.900 & done

Don’t forget to first create the log directory.

12

A Program overview and some hints for the

coding

A.1 Data storage

There are several different ways to store the positions and velocities for a
set of particles, but we here go for the simplest which is just to use arrays
of type double. One reason for this choice is that it is then easy to write
code with or without velocity coordinates which can be used in both two and
three dimensions.

With the variable pos for the positions, the x and y, coordinates of the
first particle, particle number zero, are then pos[0] and pos[1], and it
follows that the storage for the second particle start at pos[2], or, more
generally, with D for the dimensionality, storage for particle i starts at pos[D
* i].

Since some of our simulation methods uses velocity variables whereas
others do not, we want the velocity variable, vel, to be present only in
certain versions of the program. We then let the first half of the array atoms

contain the position array whereas the second part contains the velocities.
With the number of particles in par->n, a part of the code may then be
written

double *atoms;

atoms = malloc(par->n * 2 * D * sizeof(double));

double *pos = atoms;

double *vel = atoms + par->n * D;

The notation in “double *pos = atoms” is confusing, but the declaration
should be taken to mean that pos is of type double *, a pointer to a double.
This is thus actually the same as

double *pos;

pos = atoms;

To illustrate this we show the code to advance the position of the particles
one time step. We can then either write

for (i = 0; i < par->n; i++) {

13

for (d = 0; d < D; d++)

pos[D * i + d] += par->deltat * vel[D * i + d];

}

or, by just combining in a single loop

for (id = 0; id < D * par->n; id++)

pos[id] += par->deltat * vel[id];

or, by using ipos and ivel for position and velocity of particle i,

for (i = 0; i < par->n; i++) {

double *ipos = pos + D * i;

double *ivel = vel + D * i;

for (d = 0; d < D; d++)

ipos[d] += par->deltat * ivel[d];

}

Note that the code above is a not complete, as the particles will now
and then move outside the simulation box. One therefore needs to include a
check that the new position is within the range [0, L), and otherwise move it
to the image position that is inside the simulation box. This test should be
done each time a particle is moved.

14

A.2 Code overview

Sketch of the contents of sim.c:

void run_simulation(Par *par)

{

. // Initialize

.

for (iblock = 0; iblock < par->nblock; iblock++) {

for (isamp = 0; isamp < par->nsamp; isamp++) {

for (istep = 0; istep < nstep; istep++) // Advance one time unit

step(par, atoms, force); // Take one leap-frog step

measure(par, atoms, vblock); // Measure quantities, store in vblock

}

}

.

}

// read_args interprets the commands on the command line

int read_args(Par *par, char *arg)

{

.

if (!strcmp(arg, "run")) {

.

run_simulation(par);

}

.

}

// The main program. Execution starts here.

int main(int argc, char *argv[])

{

for (iarg = 1; iarg < argc; iarg++)

if (!read_args(&par, argv[iarg]))

exit(EXIT_FAILURE);

.

exit(EXIT_SUCCESS);

}

15

