
5.2.13 Damped harmonic oscillator

The motion of a damped harmonic oscillator is described by

ẍ+ bẋ+ kx = 0,

where b > 0 is the damping constant.

a) Rewrite the equation as a two-dimensional linear system.

Solution: When rewritten as two first order equations it
becomes

{

ẋ = v,
v̇ = −

k

m
x−

b

m
v.

b) Classify the fixed point at the origin and sketch the phase portrait. Be
sure to show all the different cases that can occur, depending on the
relative sizes of the parameters.

Solution: The matrix becomes

A =

(

0 1
−k/m −b/m

)

⇒ τ = −b/m, ∆ = k/m.

The eigenvalues become

λ± = −
b

2m
±

1

2

√

(b/m)2 − 4k/m.

Considering the square root there are three possibilities. We
here take m = 1 and k = 1 and let b vary to get the three dif-
ferent cases. We illustrate the solutions both with the vector
fields and with the flow starting from two initial positions.

1. Positive quantity in the square root, (b/m)2 > 4k/m,
which we get with b = 3:
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2. Vanishing quantity in the square root, (b/m)2 = 4k/m,
which we get with b = 2:
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This requires some more thought and is discussed further
below.

3. Negative quantity in the square root, (b/m)2 < 4k/m,
which we get with b = 1:
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Note that this is a case when the eigenvectors are equal,
and with only a single eigenvector.

c How do our results relate to the standard notions of overdamped, crit-
ically damped, and underdamped vibrations?

Solution: These three cases correspond to overdamped, crit-
ically damped and underdamped.

Solution for the case with just a single eigen-

value

When b = 2 we have A =

(

0 1
−1 −2

)

and we get τ = −2 and ∆ = 1 which

gives λ1 = λ2 = τ/2 = −1. To determine the eigenvector, v1, we try
(

0
0

)

=

(

−λ 1
−1 −2− λ

)(

u
w

)

=

(

u+ w
−u− w

)

⇒ v1 =

(

1
−1

)

.

The second eigenvector is from [A− λI]v2 = v1 and we get

(

1
−1

)

=

(

1 1
−1 −1

)(

u
w

)

=

(

u+ w
−u− w

)

→ w = 1− u.

We are here free to choose u as we like and can equally well get

v2 =

(

0
1

)

as v2 =

(

1
0

)

.
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Chosing the first we find that the full solution is

x(t) = c1e
λt

(

1
−1

)

+ c2

[

teλt
(

1
−1

)

+ eλt
(

0
1

)]

.

With x0 = (1, 1) we get c1 = 1 and c2 = 2:

x(t) = eλt
(

1
−1

)

+ 2

[

teλt
(

1
−1

)

+ eλt
(

0
1

)]

.

which is the same as

x(t) = eλt
[(

1
1

)

+ 2t

(

1
−1

)]

. (1)

The more general case

To consider the general case we note that we are free to choose u as we like
and we also consider a general starting point. We then write

v2 =

(

u
1− u

)

.

and we find that the full solution then becomes

x(t) = c1e
λt

(

1
−1

)

+ c2

[

teλt
(

1
−1

)

+ eλt
(

u
1− u

)]

.

With x0 = (x0, y0) we get

c1 + uc2 = x0 ⇒ c1 = x0 − uc2,

−c1 + (1− u)c2 = y0 ⇒ uc2 − x0 + (1− u)c2 = y0 ⇒ c2 = x0 + y0,

and c1 = (1− u)x0 − uy0.

x(t) = [(1−u)x0−uy0]e
λt

(

1
−1

)

+(x0+y0)

[

teλt
(

1
−1

)

+ eλt
(

u
1− u

)]

.

x(t) = eλt
(

(1− u)x0 − uy0 + u(x0 + y0)
(u− 1)x0 + uy0 + (1− u)(x0 + y0)

)

+ (x0 + y0)te
λt

(

1
−1

)

= eλt[x0 + (x0 + y0)tv1].

Note that the prefactor of the term eλttv1 (x0+y0) which (since v1 = (1,−1))
means that it vanishes since x0 is along v1. The term ∼ teλt therefore only
present if x0 is not parallel to v1.
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