The Fokker-Planck equation

From last lecture:

The Fokker-Planck equation describes the change of the probability
distribution function with time:
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Application of the Fokker-Planck equation

What is the stationary probability distribution for a particle in a one
dimensional potential U(x) at temperature T, with Brownian dynamics?

We then need to evaluate the integrals over D(x + X, A¢|x, 0), related to
the dynamics,

A

Write as a delta function!
. A - Ay .
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The relevant quantities are My and M, averaged over the random noise:
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Application of the Fokker-Planck equation. .. cont'd

With M, = 1 <<ﬁF + nAt> > and
At o
2T
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oUu/ox, — (m)=0, (1) Ve
we get, to lowest order in Ay,
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Stationary solution

Our equation is

8P 1 92
E - [PM1] + = % [PM;] .
With 1 ou 2T
M]. = M2 =
Ca0x’ «
this becomes
0P 10 [,0U] TP
ot ~ adx | Ox a Ox2’

Peter Olsson (Umed University) Stochastic simulations 1: Sec. 3-4

September 28, 2021

4/16



Stationary solution. .. cont'd

We now want to demonstrate that P < e~Y/T is the stationary solution to

the F-P equation, i.e. that it gives 9P/0t = 0. First note:

oy OP_ 10U, 9P
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We then have
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and we arrive at
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Monte Carlo simulations

The theoretical treatment of Monte Carlo simulations starts from the
concept of a Markov chain but since this is rather abstract we will. ..

@ introduce Monte Carlo by considering how the method is used for
simulating a gas,

@ turn to the formulation in terms of Markov chains as a second step.
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Monte Carlo for an interacting gas

In the standard implementation one loops over the particles, i =1,... N:
© Suggest a random change of the position of particle i:
ri=ri+6j,
where the 6§X), 5§y), and 552), are usually from a rectangular

distribution centered around zero, € [—b, b).

@ Let v denote the initial configuration and & the new configuration
where particle i is at r;. Calculate the energy difference
AU=U,—-U,.

© Accept this new position with probability
Qy—sy = Min (e’AU/T, 1) .

i.e. generate a random number & € [0,1) and accept the change if
§< Oy
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Monte Carlo simulations. . .a few remarks

@ Monte Carlo is exact! (Other methods are correct only as A; — 0.)

@ To get a reasonably efficient simulation the range of the suggested
changes d; should be chosen such that the acceptance ratio is not too
far from 50%, say between 30 and 70%.

@ To compute the change in energy we use

AU = Uu -U, = Z[u(r; - r.i) - u(l’,' - rj)]v
Jj

which is a computation of order N.
No need to calculate the ~ N?/2 terms in

> u(ry).

i<j

Peter Olsson (Umed University) Stochastic simulations 1: Sec. 3-4 September 28, 2021 8/16



Markov chains

Note: matrices are here used as a means to describe the dynamics. They
are never put into the computer.

Suppose that there is a finite number of possible configurations or
multidimensional variables x(*).

A Markov chain is a random chain of these variables, x1, xo,. .. produced
by means of a transition matrix p,, with the following properties:

Puu = 0,
pl/l/ # 11
> Pup=1forallv.

necessary since probabilities have to be non-negative,

the chain may never come to a halt,

000 00O

the total probability to go to some state must always be equal to
unity.
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Markov chains. . . cont’'d

If the chain is ergodic—i.e. if we are not stuck in a limited region of the
phase space—then. ..

A random walk according to these transition probabilities will lead
to a certain probability distibution T, = m(x*)).
This is a profound result which makes Markov chains very useful.

(One can also relax the condition of a discrete set of possible
configurations; Markov chains may also be defined for a continuous
configuration space.)
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To construct the transition matrix

How should we go about to choose the transition matrix such that a
certain probability distribution 7, is obtained?

A sufficient (but not necessary) condition is to require detailed balance, i.e.

TyPvp = TuPuv-

Consider the probability to be in state u after a given step, which is

g TyPry = Ty § Puy = Ty-
v v

(What is shown here: If we start in the desired probability distribution we
will remain in that probability distribution.)

Peter Olsson (Umed University) Stochastic simulations 1: Sec. 3-4 September 28, 2021 11/16



To construct the transition matrix. .. cont'd
The transition probability may be thought of to consist of two parts.

We write Pop = QuuQups where
Guu = probability for the transition to be suggested
oy, = probability for the transition to be accepted

Note that g, in our gas is non-zero only for the small subset of all
() _ )
1 1

+ d for the remaining particle.

possible configurations p with r
(W) _ ()

i i

for N — 1 particles and
r

Detailed balance may be fulfilled with the following choice for a,,;:

. (g
Oy, = min RN
TvQuu
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The Metropolis algorithm

This simplifies for symmetric targeting probabilities g = g,, = g,

. T
Oy, = min <—“, 1>
Ty
We now demonstrate that this expression leads to detailed balance,
TuPop = TpPuv-

With p,, = qauy:

T
_ _ . 0 _ :
TPy = Tyq Qyy = T,q Min <7r_’ 1> = q min(m,, 7).
14

. Ty .
TuPuy = Tpq Oy = T,q Min (W—, 1> = g min(m,, 7).
I

(The same derivation works for the more general a,,,.)
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Monte Carlo and expectation values

How do we calculate expectation values? Two cases:

@ Experiments, MD and MC, with n measurements:
1 n
(A) == > A
v=1

Here the configurations appear with a probability oc e &/T.

@ Statistical physics:

(A) = XV:AVP = %;Aye_E”/T.

The sum is here over all possible configurations.
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Program structure

The program usually consists of a few different parts:

@ Initialization — Assign initial values to the positions in some way.
(Positions from an earlier run. Just random values).

@ Equilibration — Some time is needed before the Markov chain starts
to give configurations from to the correct probability distribution.
(“Thermalization.” This sometimes needs very long times.)

© Production — The actual run when data are collected. Results could
also be written to a data file for later analysis.

© Print out results — The averages are obtained from visum. (See
below!) With v2sum it also becomes possible to determine the
standard error.
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Production

The part of the run when data are collected. Also write to a data file and

a config file for later use.

The below is a good structure for the simulation.

for iblock=... {
for isamp= ... nsamp {
mc_update (pos) ;
measure (pos, vsum) ;

}

write_data(vsum);

write_conf (pos);

visum[ ] += vsum[ ];

v2sum[ ] += vsum[ ] * vsum[ ];
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