
The Fokker-Planck equation

From last lecture:

The Fokker-Planck equation describes the change of the probability
distribution function with time:

∂P(x , 0)

∂t
≈ − ∂

∂x
[P(x , 0)M1] +

1

2

∂2

∂x2
[P(x , 0)M2] ,

where

Mn =
1

∆t

∫
dx̃ x̃nD(x + x̃ ,∆t |x , 0).
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Application of the Fokker-Planck equation

What is the stationary probability distribution for a particle in a one
dimensional potential U(x) at temperature T , with Brownian dynamics?

We then need to evaluate the integrals over D(x + x̃ ,∆t |x , 0), related to
the dynamics,

x(∆t) = x(0) +
∆t

α
F + η∆t .

Write as a delta function!

D(x+x̃ ,∆t |x , 0) = δ

(
x +

∆t

α
F + η∆t − (x + x̃)

)
= δ

(
∆t

α
F + η∆t − x̃

)
.

The relevant quantities are M1 and M2 averaged over the random noise:

Mn =
1

∆t

〈∫
dx̃ x̃n δ

(
∆t

α
F + η∆t − x̃

)〉
=

1

∆t

〈(
∆t

α
F + η∆t

)n〉
.
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Application of the Fokker-Planck equation. . . cont’d

With Mn =
1

∆t

〈(
∆t

α
F + η∆t

)n〉
and

F = −∂U/∂x , 〈η〉 = 0, 〈η2〉 =
2T

α∆t
,

we get, to lowest order in ∆t ,

M1 = − 1

α

∂U

∂x
+

1

∆t
〈η〉∆t = − 1

α

∂U

∂x
,

and

M2 =
1

∆t

[(
−∆t

α

∂U

∂x

)2

− ∆t

α

∂U

∂x
〈η〉∆t + 〈η2〉∆2

t

]
=

2T

α
.
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Stationary solution

Our equation is

∂P

∂t
≈ − ∂

∂x
[PM1] +

1

2

∂2

∂x2
[PM2] .

With

M1 = − 1

α

∂U

∂x
, M2 =

2T

α
,

this becomes
∂P

∂t
≈ 1

α

∂

∂x

[
P
∂U

∂x

]
+

T

α

∂2P

∂x2
,
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Stationary solution. . . cont’d

We now want to demonstrate that P ∝ e−U/T is the stationary solution to
the F-P equation, i.e. that it gives ∂P/∂t = 0. First note:

P ∝ e−U/T ,
∂P

∂x
= − 1

T

∂U

∂x
P,

∂2P

∂x2
=

[
1

T 2

(
∂U

∂x

)2

− 1

T

∂2U

∂x2

]
P.

We then have

∂

∂x

[
P
∂U

∂x

]
=
∂P

∂x

∂U

∂x
+ P

∂2U

∂x2
= − 1

T

(
∂U

∂x

)2

P +
∂2U

∂x2
P.

and we arrive at

∂P

∂t
≈ 1

α

∂

∂x

[
P
∂U

∂x

]
+

T

α

∂2P

∂x2
= 0.
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Monte Carlo simulations

The theoretical treatment of Monte Carlo simulations starts from the
concept of a Markov chain but since this is rather abstract we will. . .

1 introduce Monte Carlo by considering how the method is used for
simulating a gas,

2 turn to the formulation in terms of Markov chains as a second step.
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Monte Carlo for an interacting gas
In the standard implementation one loops over the particles, i = 1, . . .N:

1 Suggest a random change of the position of particle i :

r′i = ri + δi ,

where the δ
(x)
i , δ

(y)
i , and δ

(z)
i , are usually from a rectangular

distribution centered around zero, ∈ [−b, b).

2 Let ν denote the initial configuration and µ the new configuration
where particle i is at r′i . Calculate the energy difference
∆U = Uµ − Uν .

3 Accept this new position with probability

αν→µ = min
(
e−∆U/T , 1

)
.

i.e. generate a random number ξ ∈ [0, 1) and accept the change if
ξ < αν→µ.
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Monte Carlo simulations. . . a few remarks

Monte Carlo is exact! (Other methods are correct only as ∆t → 0.)

To get a reasonably efficient simulation the range of the suggested
changes δi should be chosen such that the acceptance ratio is not too
far from 50%, say between 30 and 70%.

To compute the change in energy we use

∆U ≡ Uµ − Uν =
∑
j

[u(r′i − rj)− u(ri − rj)],

which is a computation of order N.
No need to calculate the ∼ N2/2 terms in∑

i<j

u(rij).
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Markov chains

Note: matrices are here used as a means to describe the dynamics. They
are never put into the computer.

Suppose that there is a finite number of possible configurations or
multidimensional variables x (ν).
A Markov chain is a random chain of these variables, x1, x2,. . . produced
by means of a transition matrix pνµ with the following properties:

1 pνµ ≥ 0,

2 pνν 6= 1,

3
∑

µ pνµ = 1 for all ν.

1 necessary since probabilities have to be non-negative,

2 the chain may never come to a halt,

3 the total probability to go to some state must always be equal to
unity.
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Markov chains. . . cont’d

If the chain is ergodic—i.e. if we are not stuck in a limited region of the
phase space—then. . .

A random walk according to these transition probabilities will lead
to a certain probability distibution πν ≡ π(x (ν)).

This is a profound result which makes Markov chains very useful.

(One can also relax the condition of a discrete set of possible
configurations; Markov chains may also be defined for a continuous
configuration space.)
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To construct the transition matrix

How should we go about to choose the transition matrix such that a
certain probability distribution πν is obtained?

A sufficient (but not necessary) condition is to require detailed balance, i.e.

πνpνµ = πµpµν .

Consider the probability to be in state µ after a given step, which is∑
ν

πνpνµ = πµ
∑
ν

pµν = πµ.

(What is shown here: If we start in the desired probability distribution we
will remain in that probability distribution.)
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To construct the transition matrix. . . cont’d
The transition probability may be thought of to consist of two parts.

We write pνµ = qνµανµ, where

qνµ = probability for the transition to be suggested

ανµ = probability for the transition to be accepted

Note that qνµ in our gas is non-zero only for the small subset of all

possible configurations µ with r
(µ)
i = r

(ν)
i for N − 1 particles and

r
(µ)
i = r

(ν)
i + δ for the remaining particle.

Detailed balance may be fulfilled with the following choice for ανµ:

ανµ = min

(
πµqµν
πνqνµ

, 1

)
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The Metropolis algorithm

This simplifies for symmetric targeting probabilities q = qνµ = qµν .

ανµ = min

(
πµ
πν
, 1

)
We now demonstrate that this expression leads to detailed balance,

πνpνµ = πµpµν .

With pνµ = qανµ:

πνpνµ = πνq ανµ = πνq min

(
πµ
πν
, 1

)
= q min(πν , πµ).

πµpµν = πµq αµν = πµq min

(
πν
πµ
, 1

)
= q min(πµ, πν).

(The same derivation works for the more general ανµ.)
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Monte Carlo and expectation values

How do we calculate expectation values? Two cases:

Experiments, MD and MC, with n measurements:

〈A〉 =
1

n

n∑
ν=1

Aν .

Here the configurations appear with a probability ∝ e−Eν/T .

Statistical physics:

〈A〉 =
∑
ν

AνPν =
1

Z

∑
ν

Aνe
−Eν/T .

The sum is here over all possible configurations.
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Program structure

The program usually consists of a few different parts:

1 Initialization – Assign initial values to the positions in some way.
(Positions from an earlier run. Just random values).

2 Equilibration – Some time is needed before the Markov chain starts
to give configurations from to the correct probability distribution.
(“Thermalization.” This sometimes needs very long times.)

3 Production – The actual run when data are collected. Results could
also be written to a data file for later analysis.

4 Print out results – The averages are obtained from v1sum. (See
below!) With v2sum it also becomes possible to determine the
standard error.
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Production

The part of the run when data are collected. Also write to a data file and
a config file for later use.

The below is a good structure for the simulation.

for iblock=... {

for isamp= ... nsamp {

mc_update(pos);

measure(pos, vsum);

}

write_data(vsum);

write_conf(pos);

v1sum[ ] += vsum[ ];

v2sum[ ] += vsum[ ] * vsum[ ];

}
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