0. Introduction

These notes will describe five different methods, 1 through 5, for doing
simulations of a gas of interacting particles.
First some introductory points:

Adding interactions to the ideal gas.
The Lennard-Jones interaction.
Length and time scales.

°
°
°
@ Simulation units.
@ The Boltzmann distribution.
°

Expression for the pressure.
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Adding interactions to the ideal gas

The ideal gas—no interactions
pV = NkgT,

relates pressure times volume to the number of particles, Boltzmann's
constant, and the temperature (measured in Kelvin).

Approximate the interaction energy by a sum of pair interactions:
1
LSSl — )
i
= S ulln - ).

i j>i

U({r})

Note: two different ways to avoid double counting.
In the code we should use the second!
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The Lennard-Jones interaction

The Lennard-Jones interaction: 1r

uLy(r) /e

e attractive at large distances, ~ —r—°,

e replusive at short distances, ~ r—12. W
1k T,

;;;;;;

Taken together this gives the Lennard-Jones potential,

aat =4[ (9)* - ()’

where o and € are the length and energy scales of the interaction.

The minimum of the potential:

1/6
fmin = 2 / g, ULJ(rmin) = —€.
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Length and time scales

What are the characteristic length, time, and energy scales of a real gas?

The parameters of the LJ interaction for Neon atoms are
e=418x10"%J and o0=312x10"1%m.

The typical velocity from m(v?) = 3kg T, where “3" is the dimensionality.
With

@ m~ 28 x 1.67 x 10720 kg for N, molecules (typical of air),
e T =300 K (which is 27 °C), kg~ 1.38 x 1072 J/K,

(v2) =~ 10° m/s.

Time scale of 10713 s = 0.1 ps, since o ~ 10710 m
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Simulation units

To use simulations units, let

r ur(r)
o/m — r and /] — upy(r) and kgT/(e/J)— T,

where o/m (meter) and €/J (Joule) are pure numbers.
Note:

@ r and urj still have dimensions of length and energy,

@ r = o in ordinary units is now r = 1.

@ The temperature now has dimension of energy.

o We often take m = 1 (instead of something x10726 kg).
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The Boltzmann distribution

Two different ensembles:

@ Microcanonical ensemble—only states with a given energy,

@ Canonical ensemble—all energies are possible, controlled by the
temperature.

(Including states irrespective of energy often simplifies both analytical
calculations and numerical computations.)

A key quantity in the canonical ensemble: the Boltzmann factor, e £+/T.
The probability of a state is proportional to the Boltzmann factor,

—E,)T

P, x e
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Expression for the pressure

@ Molecular dynamics—pressure from the change of momentum the
particles bounce off the walls.

@ Monte Carlo (no dynamics)—determine pressure from a correlation
function!

Starting point: dF = —SdT — pdV + pdN gives p = — (%)N T
From SF = —In Z we get

dinZ
Bp = s Z= Zkianonf7
oV N3

where

1
ZCOnf = m /\; dr]_ . drNeiﬁU(rN).

Differentiate with respect to the integration volume?!

Peter Olsson (Umed University) Stochastic simulations 1: Sec. 0-1 September 22, 2021 7/16



Expression for the pressure. .. cont'd
Changing coordinates to  x=r/VY/9 = drN = VNdx"N gives

Bp = 88\/”] [VN/dee—BZKj”(VI/dXU)]

~d N —BU
= dVInV + In[/dxe ]

=y e <—6§,\lf) | J|f o]

Putting things together we get the virial theorem

N
Bp = V_\/d<zzr” ru)>

i j>i

which in terms of the interparticle force becomes

pV = NkgT + = <eru ,J>

i j>i
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Different kinds of simulations

Five different methods that may be used for simulating a gas.
i—iii: Different ways to describe the system.
1-5: Different kinds of dynamics.

i) Describe the gas in terms of {r} and {v}.
1) Molecular dynamics: ODE — deterministic.
2) Langevin dynanics: ODE with a stochastic term.
ii) Describe the gas with {r}, only.
3) Brownian dynamics: Ar; = cF;+ noise.
4) Monte Carlo: No real dynamics. For each particle i iterate:
* suggest a change Ar; by random,
* calculate the change in energy, AE;,
* accept this change with a probability that depends on AE;/T.
iii) Use a discrete space with positions
r, = (0,0,0),(0,0,1),...(0,0,L—1),...(L—1,L—1,L—1).
5) The lattice gas: Each position either occupied or empty, n, =0, 1.
Monte Carlo with fluctuating numbers of particles.
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Considerations for MD—Elementary physics
The behavior of a classical gas is fully specified by the Hamiltonian,
H({r},{v}) = U({r}) + K({v}), given by
1 m,-v,?
U= EZU(”_U) and K:ZT.
iJ i
The dynamics is given by Newton's second law:

miv; = F; = —=V,;U({r}), where V; is differentiation w.r.t. r;.

For each velocity component the probability distribution is
P(v) x e~ ™/2T " normal distribution—central limit theorem.

and accordingly
2\ . m, ., B
m(v°) = T in terms of energy: E(v ) = > (2)
The total energy is a constant. U and K fluctuate during the simulation.
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Cutoff in the interaction potential

In an “exact” simulation of a Lennard-Jones gas we would use the
potential out to arbitrary distances—very inefficient!

Introduce a cutoff r.

us(r) = uy(r) —uny(re),  r<re,
’ 0, r>re.

We can then neglect particles at big distances.

If one also needs a well-behaved second derivative:

re

uLy(r) — ung(re) + (re —r) 42| r<r,
us(r) = 0 -
) r re.
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How handle the walls? Periodic boundary conditions!

Think of several identical simulation cells
placed one after the other with the same
particles. Only a mental picture!

@ Dynamics: When a particle leaves the system through a wall it
simultanously enters the system through the opposite wall.
Each time a particle coordinate changes, check if the new position is
outside the cell, x < Qor x > L. Ifsox+ L — xorx—L— x.

@ Forces: Only consider the interaction with the nearest image.

To find the nearest image, for directions x, y, and z: x;; = x; — X;.

If |x;j| > L/2 either add or subtract L such that |x;| < L/2.

The distance vector is rjj = (xjj, yjj, Zij)-

@ The nearest image convention has implications for the smallest
possible size of the simulation cell. We need L > 2r..
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Integration method
Our basic equations:

r=v, mv =F.
Two good methods with time reversal symmetry:

@ The leap from method.

@ The velocity Verlet method.

The leap-frog method has positions and forces defined at times t = nA;
whereas velocities are defined at the intermediate times, t = (n+ 1/2)A,.
With the notation r, = r(nA;):

Vor12 = Vao1/2 +(1/m)FpAs,
fnt1 = Fn+ VoA

Note: in the code we always write over the old values with the new ones.
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Integration time step

Two considerations when it comes to the time step:

@ Stability—otherwise the solution will go to infinity.
@ Good precision!

We can only expect a good precision if the steps are small enough
that the change in interaction potential in a single step is small.

If the interaction potential changes on the scale /,

(vy Ay < l, or A <<€1/$.

In practice: test different time steps and choose one in the range
where the measured results only depend very weakly on A;.
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Langevin dynamics

@ Mostly used as an ODE with a thermostat.

@ Originally invented to simulate bigger molecules in a solvent with a
large number of smaller molecules. (Big biological molecules in
water.)

Idea: include the effect of the smaller molecules in an average way. Good
for two reasons:

@ A large fraction of the molecules may be eliminated from the
calculations.

@ The heavier molecules typically move more slowly—we can do with a
bigger time step!
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Langevin dynamics. .. cont'd

Add two terms:

@ a random force, ¢, adds energy,

@ a friction term —aw, dissipates energy.

The equations of motion then become
mv=F—av+ (.

How should the magnitude of ¢ be chosen to do a simulation at a desired
temperature?

We first need to consider how the noise should be treated.
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