
0. Introduction

These notes will describe five different methods, 1 through 5, for doing
simulations of a gas of interacting particles.
First some introductory points:

Adding interactions to the ideal gas.

The Lennard-Jones interaction.

Length and time scales.

Simulation units.

The Boltzmann distribution.

Expression for the pressure.
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Adding interactions to the ideal gas

The ideal gas—no interactions

pV = NkBT ,

relates pressure times volume to the number of particles, Boltzmann’s
constant, and the temperature (measured in Kelvin).

Approximate the interaction energy by a sum of pair interactions:

U({r}) =
1

2

∑
i

∑
j

u(|ri − rj |)

=
∑
i

∑
j>i

u(|ri − rj |).

Note: two different ways to avoid double counting.
In the code we should use the second!
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The Lennard-Jones interaction

The Lennard-Jones interaction:

attractive at large distances, ∼ −r−6,

replusive at short distances, ∼ r−12.
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Taken together this gives the Lennard-Jones potential,

uLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
,

where σ and ε are the length and energy scales of the interaction.

The minimum of the potential:

rmin = 21/6σ, uLJ(rmin) = −ε.
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Length and time scales

What are the characteristic length, time, and energy scales of a real gas?

The parameters of the LJ interaction for Neon atoms are

ε = 4.18× 10−22 J and σ = 3.12× 10−10 m.

The typical velocity from m〈v2〉 = 3kBT , where “3” is the dimensionality.

With

m ≈ 28× 1.67× 10−26 kg for N2 molecules (typical of air),

T = 300 K (which is 27 ◦C ), kB ≈ 1.38× 10−23 J/K,√
〈v2〉 ≈ 103 m/s.

Time scale of 10−13 s = 0.1 ps, since σ ∼ 10−10 m.
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Simulation units

To use simulations units, let

r

σ/m
→ r and

uLJ(r)

ε/J
→ uLJ(r) and kBT/(ε/J)→ T ,

where σ/m (meter) and ε/J (Joule) are pure numbers.

Note:

r and uLJ still have dimensions of length and energy,

r = σ in ordinary units is now r = 1.

The temperature now has dimension of energy.

We often take m = 1 (instead of something ×10−26 kg).
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The Boltzmann distribution

Two different ensembles:

Microcanonical ensemble—only states with a given energy,

Canonical ensemble—all energies are possible, controlled by the
temperature.

(Including states irrespective of energy often simplifies both analytical
calculations and numerical computations.)

A key quantity in the canonical ensemble: the Boltzmann factor, e−Eν/T .

The probability of a state is proportional to the Boltzmann factor,

Pν ∝ e−Eν/T .
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Expression for the pressure

Molecular dynamics—pressure from the change of momentum the
particles bounce off the walls.

Monte Carlo (no dynamics)—determine pressure from a correlation
function!

Starting point: dF = −SdT − pdV + µdN gives p = −
(
∂F
∂V

)
N,T

.

From βF = − lnZ we get

βp =

(
∂ lnZ

∂V

)
N,β

, Z = ZkinZconf ,

where

Zconf =
1

N!

∫
V
dr1 . . . drNe

−βU(rN).

Differentiate with respect to the integration volume?!
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Expression for the pressure. . . cont’d
Changing coordinates to x = r/V 1/d ⇒ drN = VNdxN gives

βp =
∂

∂V
ln

[
VN

∫
dxNe−β

∑
i<j u(V 1/dxij )

]
=

d

dV
lnVN +

∂

∂V
ln

[∫
dxNe−βU

]
=

N

V
+

[∫
dxN

(
−β ∂U

∂V

)
e−βU

]/[∫
dxNe−βU

]
.

Putting things together we get the virial theorem

βp =
N

V
− β

Vd

〈∑
i

∑
j>i

riju
′(rij)

〉
,

which in terms of the interparticle force becomes

pV = NkBT +
1

d

〈∑
i

∑
j>i

rijFij

〉
. (1)
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Different kinds of simulations

Five different methods that may be used for simulating a gas.
i–iii: Different ways to describe the system.
1–5: Different kinds of dynamics.

i) Describe the gas in terms of {r} and {v}.
1) Molecular dynamics: ODE – deterministic.
2) Langevin dynanics: ODE with a stochastic term.

ii) Describe the gas with {r}, only.

3) Brownian dynamics: ∆ri = cFi+ noise.
4) Monte Carlo: No real dynamics. For each particle i iterate:

F suggest a change ∆ri by random,
F calculate the change in energy, ∆Ei ,
F accept this change with a probability that depends on ∆Ei/T .

iii) Use a discrete space with positions
r` = (0, 0, 0), (0, 0, 1),. . . (0, 0, L− 1),. . . (L− 1, L− 1, L− 1).

5) The lattice gas: Each position either occupied or empty, n` = 0, 1.
Monte Carlo with fluctuating numbers of particles.
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Considerations for MD—Elementary physics
The behavior of a classical gas is fully specified by the Hamiltonian,

H({r}, {v}) = U({r}) + K ({v}), given by

U =
1

2

∑
i ,j

u(ri − rj) and K =
∑
i

miv
2
i

2
.

The dynamics is given by Newton’s second law:

mi v̇i = Fi ≡ −∇iU({r}), where ∇i is differentiation w.r.t. ri .

For each velocity component the probability distribution is

P(v) ∝ e−mv2/2T , normal distribution—central limit theorem.

and accordingly

m〈v2〉 = T in terms of energy:
m

2
〈v2〉 =

T

2
. (2)

The total energy is a constant. U and K fluctuate during the simulation.
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Cutoff in the interaction potential

In an “exact” simulation of a Lennard-Jones gas we would use the
potential out to arbitrary distances—very inefficient!

Introduce a cutoff rc

us(r) =

{
uLJ(r)− uLJ(rc), r < rc ,
0, r > rc .

We can then neglect particles at big distances.

If one also needs a well-behaved second derivative:

us(r) =

{
uLJ(r)− uLJ(rc) + (rc − r) duLJ

dr

∣∣∣
rc
, r < rc ,

0, r > rc .
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How handle the walls? Periodic boundary conditions!
Think of several identical simulation cells
placed one after the other with the same
particles. Only a mental picture!

Dynamics: When a particle leaves the system through a wall it
simultanously enters the system through the opposite wall.
Each time a particle coordinate changes, check if the new position is
outside the cell, x < 0 or x > L. If so x + L→ x or x − L→ x .

Forces: Only consider the interaction with the nearest image.
To find the nearest image, for directions x , y , and z : xij = xi − xj .
If |xij | > L/2 either add or subtract L such that |xij | < L/2.

The distance vector is rij = (xij , yij , zij).

The nearest image convention has implications for the smallest
possible size of the simulation cell. We need L ≥ 2rc .
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Integration method

Our basic equations:
ṙ = v, mv̇ = F.

Two good methods with time reversal symmetry:

The leap from method.

The velocity Verlet method.

The leap-frog method has positions and forces defined at times t = n∆t

whereas velocities are defined at the intermediate times, t = (n + 1/2)∆t .
With the notation rn ≡ r(n∆t):

vn+1/2 = vn−1/2 + (1/m)Fn∆t ,

rn+1 = rn + vn+1/2∆t .

Note: in the code we always write over the old values with the new ones.
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Integration time step

Two considerations when it comes to the time step:

Stability—otherwise the solution will go to infinity.

Good precision!

We can only expect a good precision if the steps are small enough
that the change in interaction potential in a single step is small.

If the interaction potential changes on the scale `,√
〈v2〉 ∆t � `, or ∆t � `

√
m

T
.

In practice: test different time steps and choose one in the range
where the measured results only depend very weakly on ∆t .
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Langevin dynamics

Mostly used as an ODE with a thermostat.

Originally invented to simulate bigger molecules in a solvent with a
large number of smaller molecules. (Big biological molecules in
water.)

Idea: include the effect of the smaller molecules in an average way. Good
for two reasons:

A large fraction of the molecules may be eliminated from the
calculations.

The heavier molecules typically move more slowly—we can do with a
bigger time step!
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Langevin dynamics. . . cont’d

Add two terms:

a random force, ζ, adds energy,

a friction term −αv, dissipates energy.

The equations of motion then become

mv̇ = F− αv + ζ.

How should the magnitude of ζ be chosen to do a simulation at a desired
temperature?

We first need to consider how the noise should be treated.
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