The Fokker-Planck equation

We will
(1) Derive the Fokker-Planck equation which is an expression for $\partial P / \partial t$.
(2) Make use of this to show that Brownian dynamics gives

$$
P(x) \propto e^{-U(x) / T}
$$

by demonstrating that

$$
\frac{\partial P}{\partial t}=0 \quad \text { if } \quad P(x) \propto e^{-U(x) / T}
$$

Derivation of the Fokker-Planck equation

Consider starting from some probability distribution $P(x, 0)$ at time $t=0$. The change to this distribution with time comes from two terms:

$$
\begin{align*}
P\left(x, \Delta_{t}\right)=P(x, 0) & -\int d \tilde{x} D\left(x-\tilde{x}, \Delta_{t} \mid x, 0\right) P(x, 0) \\
& +\int d \tilde{x} D\left(x, \Delta_{t} \mid x-\tilde{x}, 0\right) P(x-\tilde{x}, 0) \tag{1}
\end{align*}
$$

Here $D\left(x-\tilde{x}, \Delta_{t} \mid x, 0\right)$ describes the dynamics, it is the probability that the particle which was at x at $t=0$ is at $x-\tilde{x}$ at time Δ_{t}.
The second integral is the probability that the particle originally at $x-\tilde{x}$ will be found at x at time Δ_{t}.

The first integral is simplified with the use of

$$
\begin{equation*}
\int d \tilde{x} D\left(x-\tilde{x}, \Delta_{t} \mid x, 0\right)=1 \tag{2}
\end{equation*}
$$

which is just a statement that the particle originally at x has to be somewhere a time Δ_{t} later.

Derivation of the Fokker-Planck equation. . . cont'd

With $\partial P(x, 0) / \partial t \approx\left[P\left(x, \Delta_{t}\right)-P(x, 0)\right] / \Delta_{t}$ one finds

$$
\frac{\partial P(x, 0)}{\partial t} \Delta_{t}=-P(x, 0)+\int d \tilde{x} D\left(x, \Delta_{t} \mid x-\tilde{x}, 0\right) P(x-\tilde{x}, 0) .
$$

With

$$
f(x)=D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right) P(x, 0)
$$

this is

$$
\frac{\partial P(x, 0)}{\partial t} \Delta_{t}=-P(x, 0)+\int d \tilde{x} f(x-\tilde{x})
$$

Derivation of the Fokker-Planck equation... cont'd With $f(x)=D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right) P(x, 0)$ and the expansion

$$
\begin{aligned}
& f(x-\tilde{x})=\sum_{n=0}^{\infty} \frac{(-\tilde{x})^{n}}{n!} \frac{\partial^{n}}{\partial x^{n}} f(x), \quad \text { this gives } \\
& \frac{\partial P(x, 0)}{\partial t}= \\
= & -\frac{P(x, 0)}{\Delta_{t}}+\sum_{n} \frac{(-1)^{n}}{n!} \frac{\partial^{n}}{\partial x^{n}}\left[P(x, 0) \frac{1}{\Delta_{t}} \int d \tilde{x} \tilde{x}^{n} D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right)\right] \\
\approx- & -\frac{\partial}{\partial x}\left[P(x, 0) M_{1}\right]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[P(x, 0) M_{2}\right],
\end{aligned}
$$

where

$$
M_{n}=\frac{1}{\Delta_{t}} \int d \tilde{x} \tilde{x}^{n} D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right),
$$

and the $n=0$ term in the sum cancels the $P(x, 0)$ term. This is the Fokker-Planck equation.

The Fokker-Planck equation

Summary:

The Fokker-Planck equation describes the change of the probability distribution function with time:

$$
\frac{\partial P(x, 0)}{\partial t} \approx-\frac{\partial}{\partial x}\left[P(x, 0) M_{1}\right]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[P(x, 0) M_{2}\right]
$$

where

$$
M_{n}=\frac{1}{\Delta_{t}} \int d \tilde{x} \tilde{x}^{n} D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right)
$$

Application of the Fokker-Planck equation

What is the stationary probability distribution for a particle in a one dimensional potential $U(x)$ at temperature T, with Brownian dynamics?

We then need to evaluate the integrals over $D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right)$, related to the dynamics,

$$
x\left(\Delta_{t}\right)=x(0)+\frac{\Delta_{t}}{\alpha} F+\eta \Delta_{t} .
$$

Write as a delta function!

$$
D\left(x+\tilde{x}, \Delta_{t} \mid x, 0\right)=\delta\left(x+\frac{\Delta_{t}}{\alpha} F+\eta \Delta_{t}-(x+\tilde{x})\right)=\delta\left(\frac{\Delta_{t}}{\alpha} F+\eta \Delta_{t}-\tilde{x}\right)
$$

The relevant quantities are M_{1} and M_{2} averaged over the random noise:

$$
M_{n}=\frac{1}{\Delta_{t}}\left\langle\int d \tilde{x} \tilde{x}^{n} \delta\left(\frac{\Delta_{t}}{\alpha} F+\eta \Delta_{t}-\tilde{x}\right)\right\rangle=\frac{1}{\Delta_{t}}\left\langle\left(\frac{\Delta_{t}}{\alpha} F+\eta \Delta_{t}\right)^{n}\right\rangle .
$$

Application of the Fokker-Planck equation. . . cont'd

$$
\begin{aligned}
& \text { With } \quad M_{n}=\frac{1}{\Delta_{t}}\left\langle\left(\frac{\Delta_{t}}{\alpha} F+\eta \Delta_{t}\right)^{n}\right\rangle \quad \text { and } \\
& F=-\partial U / \partial x, \quad\langle\eta\rangle=0, \quad\left\langle\eta^{2}\right\rangle=\frac{2 T}{\alpha \Delta_{t}},
\end{aligned}
$$

we get, to lowest order in Δ_{t},

$$
M_{1}=-\frac{1}{\alpha} \frac{\partial U}{\partial x}+\frac{1}{\Delta_{t}}\langle\eta\rangle \Delta_{t}=-\frac{1}{\alpha} \frac{\partial U}{\partial x},
$$

and

$$
M_{2}=\frac{1}{\Delta_{t}}\left[\left(-\frac{\Delta_{t}}{\alpha} \frac{\partial U}{\partial x}\right)^{2}-2 \frac{\Delta_{t}}{\alpha} \frac{\partial U}{\partial x}\langle\eta\rangle \Delta_{t}+\left\langle\eta^{2}\right\rangle \Delta_{t}^{2}\right]=\frac{2 T}{\alpha} .
$$

Stationary solution

Our equation is

$$
\frac{\partial P}{\partial t} \approx-\frac{\partial}{\partial x}\left[P M_{1}\right]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left[P M_{2}\right]
$$

With

$$
M_{1}=-\frac{1}{\alpha} \frac{\partial U}{\partial x}, \quad M_{2}=\frac{2 T}{\alpha}
$$

this becomes

$$
\frac{\partial P}{\partial t} \approx \frac{1}{\alpha} \frac{\partial}{\partial x}\left[P \frac{\partial U}{\partial x}\right]+\frac{T}{\alpha} \frac{\partial^{2} P}{\partial x^{2}}
$$

Stationary solution. . . cont'd

We now want to demonstrate that $P \propto e^{-U / T}$ is the stationary solution to the F-P equation, i.e. that it gives $\partial P / \partial t=0$. First note:

$$
P \propto e^{-U / T}, \quad \frac{\partial P}{\partial x}=-\frac{1}{T} \frac{\partial U}{\partial x} P, \quad \frac{\partial^{2} P}{\partial x^{2}}=\left[\frac{1}{T^{2}}\left(\frac{\partial U}{\partial x}\right)^{2}-\frac{1}{T} \frac{\partial^{2} U}{\partial x^{2}}\right] P
$$

We then have

$$
\frac{\partial}{\partial x}\left[P \frac{\partial U}{\partial x}\right]=\frac{\partial P}{\partial x} \frac{\partial U}{\partial x}+P \frac{\partial^{2} U}{\partial x^{2}}=-\frac{1}{T}\left(\frac{\partial U}{\partial x}\right)^{2} P+\frac{\partial^{2} U}{\partial x^{2}} P
$$

and we arrive at

$$
\frac{\partial P}{\partial t} \approx \frac{1}{\alpha} \frac{\partial}{\partial x}\left[P \frac{\partial U}{\partial x}\right]+\frac{T}{\alpha} \frac{\partial^{2} P}{\partial x^{2}}=0
$$

