3.7 Insect outbreak

The dynamics is given by

$$\frac{dN}{dt} = r_B N \left(1 - \frac{N}{K_B} \right) - p(N),$$

where p(N) represents predation by birds.

$$p(N) = \frac{BN^2}{A^2 + N^2}$$

which has a change from low to high predation at an approximate threshold value $N_c = A$. The dynamics now becomes

$$\frac{dN}{dt} = r_B N \left(1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2}.$$

3.7 Insect outbreak... Nondimensionalisation

With four parameters, r_B , K_B , B, and A and it is difficult to analyze the model. To simplify things we introduce the dimensionless quantities

$$u = \frac{N}{A}, \quad r = \frac{Ar_B}{B}, \quad q = \frac{K_B}{A}, \quad \tau = \frac{Bt}{A},$$

which leads to the equation

$$\frac{du}{d\tau} = ru\left(1-\frac{u}{q}\right) - \frac{u^2}{1+u^2} = f(u;r,q).$$

- Two parameters r and q which are pure numbers.
- The time scale is also changed.
- (Also other possible ways to make things dimensionless.)

3.7 Insect outbreak... Fixed points

- The fixed points are where f(u) = 0.
- Three nontrivial solutions: u_1^* , u_2^* , u_3^* .
- Stable of unstable? Examine $f'(u^*)!$
 - Here $du/d\tau = f(u; r, q)$.
 - Consider the sign of $\partial f / \partial u$.
 - * u_1 : $f'(u_1) < 0$ stable. * u_2 : $f'(u_2) > 0$ — unstable. * u_3 : $f'(u_3) < 0$ — stable.

How will things change with the parameters, r and q?

3.7 Insect outbreak... Innovative graphical solution

- The right hand side is a curve with a non-trivial shape, independent of *r* and *q*.
- The left hand side depends on the parameters but is simply a straight line from (0, r) to (q, 0).
- The solutions are given by the intersections of these curves. Different *r* and *q* give different straight lines and either one or three solutions.

3.7 Insect outbreak... The effect of changing the parameters

Three solutions for $r_l \leq r \leq r_h$. Otherwise only one solution.

u

What is the effect of a gradual change of the parameter r?

It turns out that we get a hysteretical behavior.

(It could be that r changes gradually because of changes in the environment.)

3.7 Insect outbreak... The effect of changing the parameters

Consider a gradual change of r from a small value to $r > r_h$ and back again!

- When r > r_h the fixed point u₁^{*} disappears. The system jumps to u₃^{*}.
- When r < r_h not much happens; the system remains at u₃^{*}.
- When r < r_l the fixed point u₃^{*} disappears and the system jumps back to u₁^{*}.

The behavior above show the mechanism behind a tipping point:

- Things first just change gradually and slowly,
- When a parameter exceeds some critical value the system jumps to a different fixed point.
- Even if the parameter could be lowered below that critical value, the system could be stuck at this new fixed point.

Next lecture (Friday)

- 5. Linear systems with n = 2.
 - harmonic oscillator,
 - uncoupled equations,
 - classifications of linear systems,

Compare with the classification:

	n = 1	<i>n</i> = 2	<i>n</i> ≥ 3	$n \gg 1$	continuum
lin-	growth, decay	oscillations		solid state	elasticity,
ear	or equilibrium			physics	wave eqs
non-	Fixed points,	pendulum,	chaos,	research	
lin-	bifurcations	limit cycles	strange	problems	
ear			attractors	of today	