
9. Lorenz equations and chaos

Three-dimensional ODE with three parameters: σ, r , b > 0,

ẋ = σ(y − x),

ẏ = rx − y − xz ,

ż = xy − bz .

In 1963 Ed Lorenz found that this deterministic system has extremely
erratic behaviour.

The behavior was found to be “chaotic”—depends sensitively on the initial
conditions:
Compare x(t) with x′(t) starting from x0 and x0 + δ0, respectively.

Then this small distance grows exponentially:

||x′(t)− x(t)|| ∼ ||δ0||eλt .
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10. One-dimensional maps

Now: discrete time rather than continuous.

These systems are known as

difference equations,

recursion relations,

iterated maps, or just

maps.

Maps appear in different contexts:

1 For analyzing differential equations.

2 To model natural phenomena.

3 As simple examples of chaos.
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Discrete population model for a single species

Many species have no overlap between successive generations, population
growth take place through discrete steps:

Nt+1 = NtF (Nt) = f (Nt).

The simplest case: suppose that F (Nt) = r > 0:

Nt+1 = rNt ⇒ Nt = r tN0. (1)

This is usually not very realistic, though it could work for the early stages
of growth of certain bacteria.
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Graphical solution

Given the function f (Nt) and the starting
value N0 the sequence N1, N2, . . . , may be
determined graphically: The fixed point N∗

are intersections of the curve Nt+1 = f (Nt)
and the straight line Nt+1 = Nt .
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If N∗ is a stable or unstable solution is determined by f ′(Nt).
Examine the effect of a small perturbation from the fixed point:

f (N∗ + δ) = N∗ + δf ′(N∗).

A small perturbation . . .

will lead to oscillations if f ′(N∗) < 0,

will die out if |f ′(N∗)| < 1.
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Discrete population model with a limiting carrying capacity

One generally expects the function f (Nt) to have a maximum at Nm and
decrease for Nt > Nm. One such model is

Nt+1 = rNt

(
1− Nt

K

)
,

but has the drawback that Nt+1 < 0 if Nt > K , which is of course not
realistic.
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Discrete population model—the logistic model

Rescale with ut = Nt/K and examine the behavior of

ut+1 = rut(1− ut), r > 0.

We are interested in solutions with ut > 0,
only. The steady states and the
corresponding eigenvalues λ = f ′(u∗) are

u∗1 = 0, λ1 = r ,

u∗2 =
r − 1

r
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Curves for r = 1, 1.5,. . . 3.5. The solid dots show the respective steady
state solutions, u∗2 .
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Stable steady state

The determining factor for the stability is the eigenvalue,
λ = f ′(u∗2) = 2− r ; the system is stable for |λ| < 1. The figures here show
the behavior for r = 2.8 and the initial value u0 = 0.72. The successive
iterations take ut towards the stable solution u∗ = (r − 1)/r ≈ 0.643.
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Unstable steady state

The value r = 3.2 on the other hand gives λ = −1.2 and we expect the
solution u∗2 ≈ 0.688 to be unstable. Starting at u0 = 0.72, which is close
to u∗2 = (r − 1)/r ≈ 0.688, we see, just as expected, that successive
iterations take us away from the steady state. As the figures below show
this gives a new behavior with an oscillation with period=2.
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Period doubling

To examine this behavior in more detail we
consider the map from ut to ut+2 defined by

ut+1 = rut(1− ut),

ut+2 = rut+1(1− ut+1).

The figure to the right is for r = 3.2 and we
see that there are then three solutions to
ut+2 = ut , which we denote by uA, uB , and
uC . Of these uB is an unstable solution since
it has f ′(uB) > 1. (Note that uB = u∗2). On
the other hand, uA and uC are stable.

0 1
0

1

A

B

C

ut

u
t+

2
,

u
t+

1

Peter Olsson (Ume̊a University) Lecture 6: Chapter 10 September 13, 2021 9 / 13



Period doubling. . . cont’d

Note what this means: ut = uA will give
ut+2 = uA, whereas ut = uC similarly
gives ut+2 = uC . Together with the earlier
figure we may conclude that that system
oscillates, uA, uC , uA, uC ,. . . .
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This phenomenon—which is here seen as a change from a simple steady
state to an oscillation between two different values—is called a bifurcation.
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Period doubling. . . cont’d

The discussion above may now be taken
one more step in the same direction as
shown in this figure, which is for r = 3.5:
when r increases the solutions uA and uC
move somewhat, and the steady states
eventually become unstable as
f ′(uC ) < −1 and f ′(uA) < −1.
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When that happens we again get a period doubling and the system repeats
itself after 4 units of time.
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Period doubling. . . cont’d

It is then possible to repeat the discussion in this section for ut+4. We
would then find four solutions to ut+4 = ut which are stable for r = 3.5
but turn unstable at a slightly larger r . This instability gives an oscillation
of period eight, and it now seems that this period doubling may be
continued without limit.

It turns out that the distance in r between successive bifurcations
decreases rapidly, and as we approach rc ≈ 3.5699456 the oscillations have
period 2k with k →∞. For r > rc the behavior is aperiodic and we there
enter the region of chaos.
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Chaos

It turns out that the behavior
changes in unexpected ways as a
function of r :
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For 1 < r ≤ 3 there is a unique solution (r − 1)/r .

For 3 < r ≤ 1 +
√

6(≈ 3.45) the system has periodic fluctuations
between two values.

For 1 +
√

6 < r < 3.54 (approximately) the system has periodic
oscillations between four values.

For 3.54 < r < 3.57 the system oscillates between 8, 16, 32, values,
etc.

At r ≈ 3.57 is the onset of chaos. We can no longer see any
oscillations of finite period and slight variations in the initial value
yields dramatically different results over time.
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