6. Phase plane

General two dimensional. Compact vector notation, $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$.

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right), \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Many possibilities:

Things that characterize the system:

- Arrangements of fixed points; $\dot{x}=0$.
- Stable, unstable, or saddle point?
- Closed orbits—periodic solutions,

$$
\mathbf{x}(t+T)=\mathbf{x}(t)
$$

6.1 Graphical analysis

To get a quick understanding of the behavior it is clever to first sketch the two "nullclines", i.e. the lines along which $\dot{x}=0$ or $\dot{y}=0$. The crossing of these lines give the fixed points.

For the equations

$$
\begin{aligned}
& \dot{x}=x+e^{-y}, \quad \text { we get two nullclines: } \\
& \dot{y}=-y,
\end{aligned} \begin{aligned}
& x=-e^{-y}, \\
& y=0 .
\end{aligned}
$$

Plot the nullclines and the flow directions:

Note: nullclines are usually not the same as the trajectories.

6.2 Existence and uniqueness of solutions

Theorem:
Consider the initial value problem

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}), \quad \mathbf{x}(0)=\mathbf{x}_{0} .
$$

Suppose that $\mathbf{f}(\mathbf{x})$ and all its partial derivatives are continuous in some open connected set. Then for \mathbf{x} on this set the initial value problem has a solution $\mathbf{x}(t)$ on some time interval $(-\tau, \tau)$ about $t=0$ and the solution is unique.

Important corollary:
different trajectories never intersect. (If they did, the uniqueness part of the theorem would be violated.)

In two dimensions: If there is a closed orbit, any trajectory starting inside must remain there forever. Such trajectories will either approach a fixed point (inside the closed orbit) or approach the closed orbit.

6.3 Fixed points and linearization

Consider

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
\dot{y} & =g(x, y)
\end{aligned}
$$

Suppose $\left(x^{*}, y^{*}\right)$ is a fixed point, $f\left(x^{*}, y^{*}\right)=0$ and $g\left(x^{*}, y^{*}\right)=0$. Notation for small deviations: $u=x-x^{*}, v=y-y^{*}$:

$$
\begin{gathered}
\dot{u}=f\left(x^{*}+u, y^{*}+v\right)=f\left(x^{*}, y^{*}\right)+\left.u \frac{\partial f}{\partial x}\right|^{*}+\left.v \frac{\partial f}{\partial y}\right|^{*}+O\left(u^{2}, v^{2}, u v\right) . \\
\binom{\dot{u}}{\dot{v}}=\left(\begin{array}{cc}
\partial f / \partial x & \partial f / \partial y \\
\partial g / \partial x & \partial g / \partial y
\end{array}\right)\binom{u}{v}+\text { quadratic terms. }
\end{gathered}
$$

The Jacobian matrix of the fixed point $\left(x^{*}, y^{*}\right)$-similar to $f^{\prime}(x)$ in 1D:

$$
\mathbf{A}=\left(\begin{array}{cc}
\partial f / \partial x & \partial f / \partial y \\
\partial g / \partial x & \partial g / \partial y
\end{array}\right)
$$

The nonlinear terms? May be neglected if not on the borderline cases.

Last lecture: 5.2 General classification

- If $\Delta<0$ the eivenvalues are real with opposite signs: saddle point.
- if $\Delta>0$: stable if $\tau<0$ (node or spiral)
- when $4 \Delta<\tau^{2}$: eigenvalues real with the same sign (nodes)
- when $4 \Delta>\tau^{2}$: complex conjugate (spirals and centers)

Example 6.3.1

Find and classify the fixed points of the system $\dot{x}=-x+x^{3}, \dot{y}=-2 y$. From $x=x^{3}$ and $y=0 \Rightarrow$ Nullclines: $x=-1,0,1$ and $y=0$. They cross at the three fixed points: $(-1,0),(0,0)$, and $(1,0)$.
The Jacobian matrix: $\mathbf{A}=\left(\begin{array}{rr}-1+3 x^{2} & 0 \\ 0 & -2\end{array}\right)$.
Evaluate for the three fixed points:

- $(-1,0): \mathbf{A}=\left(\begin{array}{rr}2 & 0 \\ 0 & -2\end{array}\right), \quad \tau=0, \quad \Delta=-4 \Rightarrow$ saddle point.
- $(0,0): \mathbf{A}=\left(\begin{array}{rr}-1 & 0 \\ 0 & -2\end{array}\right), \quad \tau=-3, \quad \Delta=2 \Rightarrow$ stable node.
- (1,0): $\mathbf{A}=\left(\begin{array}{rr}2 & 0 \\ 0 & -2\end{array}\right), \quad \tau=0, \quad \Delta=-4 \Rightarrow$ saddle point.

Example 6.3.1... cont'd

Approximate trajectories:

Nullclines: $x=-1,0,1$ and $y=0$.
Fixed points:

- $(-1,0)$, saddle point,
- $(0,0)$, stable node,
- $(1,0)$, saddle point.

6.4 Rabbits versus sheep

Suppose that both species are competing for the same food.

- Each species would grow to its carrying capacity in the absence of the other.
- When they encounter each other, trouble starts. Usually the sheep nudges the rabbit aside.
Assume that these conflicts
- occur at a rate proportional to the size of each populations,
- affects the growth rate more severaly for rabbits than for sheep.

A model that captures these assumptions:

$$
\begin{cases}\dot{x}=x(3-x-2 y), \quad \text { rabbits, } & \\ \dot{y}=y(2-x-y), \quad \text { sheep }, & \\ \hline \dot{y}=2 y(1-x / 3)], \\ \dot{y}=2 y(1-y / 2)] .\end{cases}
$$

Four fixed points: $(x, y)=(0,0),(0,2),(3,0)$, and $(1,1)$.
The Jacobian becomes $\quad \mathbf{A}=\left(\begin{array}{cc}3-2 x-2 y & -2 x \\ -y & 2-x-2 y\end{array}\right)$.

1. $\left(x^{*}, y^{*}\right)=(0,0):$ unstable node, $\lambda_{1}=3, \lambda_{2}=2$.
$\mathbf{A}=\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right), \begin{array}{r}\tau=5, \quad \mathbf{v}_{1}=(0,1), \quad \mathbf{v}_{2}=(1,0) . . ~ \\ \Delta=6,\end{array}$
2. $\left(x^{*}, y^{*}\right)=(0,2)$, stable node, $\lambda=-1,-2$.
$\mathbf{A}=\left(\begin{array}{rr}-1 & 0 \\ -2 & -2\end{array}\right), \quad \begin{array}{r}\tau=-3, \\ \Delta=2,\end{array} \quad \mathbf{v}_{1}=(1,-2), \quad \mathbf{v}_{2}=(0,1)$.
3. $\left(x^{*}, y^{*}\right)=(3,0)$ stable node, $\lambda=-3,-1$.
$\mathbf{A}=\left(\begin{array}{rr}-3 & -6 \\ 0 & -1\end{array}\right), \quad \begin{aligned} & \tau=-4, \\ & \Delta=3,\end{aligned} \quad \mathbf{v}_{1}=(1,0), \quad \mathbf{v}_{2}=(3,-1)$.
4. $\left(x^{*}, y^{*}\right)=(1,1)$, saddle point, $\lambda=1 \pm \sqrt{2}$
$\mathbf{A}=\left(\begin{array}{ll}-1 & -2 \\ -1 & -1\end{array}\right), \begin{array}{ll}\tau=-2, & \mathbf{v}_{1}=(-1,1+\sqrt{2} / 2) \\ \Delta=-1\end{array}, \begin{aligned} & \mathbf{v}_{2}=(-1,1-\sqrt{2} / 2)\end{aligned}$

Combine all together. Easy to add some more flow directions.

The gray area-the "basin of attraction" for the fixed point at $(3,0)$. Defined to be the set of initial conditions \mathbf{x}_{0} such that $\mathbf{x}(t \rightarrow \infty) \rightarrow \mathbf{x}^{*}$.

6.5 Conservative systems

Consider Newton's law,

$$
m \ddot{x}=F(x), \quad \text { where } F \text { is independent of both } \dot{x} \text { and } t .
$$

We can then show that energy is conserved by introducing the potential energy $V(x)$, defined by

$$
F(x)=-d V / d x, \quad \text { which gives } \quad m \ddot{x}+\frac{d V}{d x}=0
$$

Multiply by \dot{x} on both sides!

$$
m \dot{x} \ddot{x}+\frac{d V}{d x} \dot{x}=0 \quad \Rightarrow \quad \frac{d}{d t}\left[\frac{1}{2} m \dot{x}^{2}+V(x)\right]=0
$$

which follows since

$$
\frac{d}{d t} V(x(t))=\frac{d V}{d x} \frac{d x}{d t}
$$

6.5 Conservative systems. . . cont'd

For a given solution $x(t)$ the quantity $\frac{1}{2} m \dot{x}^{2}+V(x)$ is a constant of time. We identify this with the energy,

$$
E=\frac{1}{2} m \dot{x}^{2}+V(x)
$$

More precise and general:
Given a system $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$, a conserved quantity is a real-valued continuous function $E(\mathbf{x})$ that is constant on trajectories, i.e. $d E / d t=0$.

We also require that $E(\mathbf{x})$ is nonconstant on all open sets.

6.5 Conservative systems. . . cont'd

Conservative systems cannot have any attracting fixed point.
Show this:
Suppose that \mathbf{x}^{*} were an attracting fixed point. Then

- all points in its basin of attraction would have the same energy,
- and therefore $E(\mathbf{x})$ is a constant function for \mathbf{x} in this basin.

This contradicts the requrement that $E(\mathbf{x})$ is nonconstant on all open sets.

One instead expects to find saddles and centers.

