6. Phase plane

General two dimensional. Compact vector notation, $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$.

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

Things that characterize the system:

- Arrangements of fixed points; $\dot{x} = 0$.
- Stable, unstable, or saddle point?
- Closed orbits—periodic solutions, $\mathbf{x}(t + T) = \mathbf{x}(t)$.

6.1 Graphical analysis

To get a quick understanding of the behavior it is clever to first sketch the two "nullclines", i.e. the lines along which $\dot{x} = 0$ or $\dot{y} = 0$. The crossing of these lines give the fixed points.

For the equations

$$\dot{x} = x + e^{-y},$$
 we get two nullclines: $\begin{aligned} x &= -e^{-y},\\ y &= 0. \end{aligned}$

Plot the nullclines and the flow directions:

Note: nullclines are usually not the same as the trajectories.

Peter Olsson (Umeå University)

2/13

6.2 Existence and uniqueness of solutions

Theorem:

Consider the initial value problem

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(0) = \mathbf{x}_0.$$

Suppose that $\mathbf{f}(\mathbf{x})$ and all its partial derivatives are continuous in some open connected set. Then for \mathbf{x} on this set the initial value problem has a solution $\mathbf{x}(t)$ on some time interval $(-\tau, \tau)$ about t = 0 and the solution is unique.

Important corollary:

different trajectories never intersect. (If they did, the uniqueness part of the theorem would be violated.)

In two dimensions: If there is a closed orbit, any trajectory starting inside must remain there forever. Such trajectories will either approach a fixed point (inside the closed orbit) or approach the closed orbit.

< □ > < 凸

6.3 Fixed points and linearization Consider

$$\dot{x} = f(x, y),$$

 $\dot{y} = g(x, y).$

Suppose (x^*, y^*) is a fixed point, $f(x^*, y^*) = 0$ and $g(x^*, y^*) = 0$. Notation for small deviations: $u = x - x^*$, $v = y - y^*$:

$$\dot{u} = f(x^* + u, y^* + v) = f(x^*, y^*) + u \left. \frac{\partial f}{\partial x} \right|^* + v \left. \frac{\partial f}{\partial y} \right|^* + O(u^2, v^2, uv).$$

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \partial f/\partial x & \partial f/\partial y \\ \partial g/\partial x & \partial g/\partial y \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \text{quadratic terms.}$$

The Jacobian matrix of the fixed point (x^*, y^*) —similar to f'(x) in 1D:

$$\mathbf{A} = \begin{pmatrix} \partial f / \partial x & \partial f / \partial y \\ \partial g / \partial x & \partial g / \partial y \end{pmatrix}.$$

The nonlinear terms? May be neglected if not on the borderline cases.

Peter Olsson (Umeå University)

Last lecture: 5.2 General classification

- If $\Delta < 0$ the eivenvalues are real with opposite signs: saddle point.
- if $\Delta > 0$: stable if $\tau < 0$ (node or spiral)
 - when $4\Delta < \tau^2$: eigenvalues real with the same sign (nodes)
 - when $4\Delta > \tau^2$: complex conjugate (spirals and centers)

Example 6.3.1

Find and classify the fixed points of the system $\dot{x} = -x + x^3$, $\dot{y} = -2y$. From $x = x^3$ and $y = 0 \Rightarrow$ Nullclines: x = -1, 0, 1 and y = 0. They cross at the three fixed points: (-1, 0), (0, 0), and (1, 0).

The Jacobian matrix:
$$\mathbf{A} = \begin{pmatrix} -1 + 3x^2 & 0 \\ 0 & -2 \end{pmatrix}$$
.
Evaluate for the three fixed points:

•
$$(-1,0)$$
: $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$, $\tau = 0$, $\Delta = -4 \Rightarrow$ saddle point.
• $(0,0)$: $\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$, $\tau = -3$, $\Delta = 2 \Rightarrow$ stable node.
• $(1,0)$: $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$, $\tau = 0$, $\Delta = -4 \Rightarrow$ saddle point.

(日)

Example 6.3.1... cont'd

Approximate trajectories:

Nullclines: x = -1, 0, 1 and y = 0.

Fixed points:

- (-1,0), saddle point,
- (0,0), stable node,
- (1,0), saddle point.

6.4 Rabbits versus sheep

Suppose that both species are competing for the same food.

- Each species would grow to its carrying capacity in the absence of the other.
- When they encounter each other, trouble starts. Usually the sheep nudges the rabbit aside.

Assume that these conflicts

- occur at a rate proportional to the size of each populations,
- affects the growth rate more severaly for rabbits than for sheep.

A model that captures these assumptions:

$$\begin{cases} \dot{x} = x(3 - x - 2y), & \text{rabbits}, \\ \dot{y} = y(2 - x - y), & \text{sheep}, \end{cases} \qquad \begin{bmatrix} \dot{x} = 3x(1 - x/3)], \\ (\dot{y} = 2y(1 - y/2)]. \end{cases}$$

Four fixed points: (x, y) = (0, 0), (0, 2), (3, 0), and (1, 1).

The Jacobian becomes
$$\mathbf{A} = \begin{pmatrix} 3 - 2x - 2y & -2x \\ -y & 2 - x - 2y \end{pmatrix}$$

.

1.
$$(x^*, y^*) = (0, 0)$$
: unstable node, $\lambda_1 = 3, \lambda_2 = 2$.
 $\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \quad \begin{array}{c} \tau = 5, \\ \Delta = 6, \end{array} \quad \mathbf{v}_1 = (0, 1), \ \mathbf{v}_2 = (1, 0). \end{array}$

2. $(x^*, y^*) = (0, 2)$, stable node, $\lambda = -1, -2$.

3.
$$(x^*, y^*) = (3, 0)$$
 stable node, $\lambda = -3, -1$.
 $\mathbf{A} = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix}, \quad \begin{array}{c} \tau = -4, \\ \Delta = 3, \end{array} \mathbf{v}_1 = (1, 0), \ \mathbf{v}_2 = (3, -1). \end{array}$

4.
$$(x^*, y^*) = (1, 1)$$
, saddle point, $\lambda = 1 \pm \sqrt{2}$

$$\mathbf{A} = \begin{pmatrix} -1 & -2 \\ -1 & -2 \end{pmatrix}, \quad \tau = -2, \quad \mathbf{v}_1 = (-1, 1 + \sqrt{2}/2)$$

$$= \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}, \quad \begin{array}{c} \tau = -2, \\ \Delta = -1 \end{pmatrix}, \quad \begin{array}{c} \mathbf{v}_1 = (-1, 1 + \sqrt{2}/2) \\ \mathbf{v}_2 = (-1, 1 - \sqrt{2}/2) \end{array}$$

Peter Olsson (Umeå University)

X

Combine all together. Easy to add some more flow directions.

The gray area—the "basin of attraction" for the fixed point at (3,0). Defined to be the set of initial conditions \mathbf{x}_0 such that $\mathbf{x}(t \to \infty) \to \mathbf{x}^*$.

6.5 Conservative systems

Consider Newton's law,

 $m\ddot{x} = F(x)$, where F is independent of both \dot{x} and t.

We can then show that energy is conserved by introducing the *potential* energy V(x), defined by

$$F(x) = -dV/dx$$
, which gives $m\ddot{x} + \frac{dV}{dx} = 0$.

Multiply by \dot{x} on both sides!

$$m\dot{x}\ddot{x} + rac{dV}{dx}\dot{x} = 0 \quad \Rightarrow \quad rac{d}{dt}\left[rac{1}{2}m\dot{x}^2 + V(x)
ight] = 0,$$

which follows since

$$\frac{d}{dt}V(x(t))=\frac{dV}{dx}\frac{dx}{dt}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6.5 Conservative systems. . . cont'd

For a given solution x(t) the quantity $\frac{1}{2}m\dot{x}^2 + V(x)$ is a constant of time. We identify this with the energy,

$$E=\frac{1}{2}m\dot{x}^2+V(x).$$

More precise and general:

Given a system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, a conserved quantity is a real-valued continuous function $E(\mathbf{x})$ that is constant on trajectories, i.e. dE/dt = 0.

We also require that $E(\mathbf{x})$ is nonconstant on all open sets.

6.5 Conservative systems. . . cont'd

Conservative systems cannot have any attracting fixed point.

Show this:

Suppose that \boldsymbol{x}^* were an attracting fixed point. Then

• all points in its basin of attraction would have the same energy,

• and therefore $E(\mathbf{x})$ is a constant function for \mathbf{x} in this basin. This contradicts the requirement that $E(\mathbf{x})$ is nonconstant on all open sets.

One instead expects to find saddles and centers.

13/13