Il Two-dimensional flows

Start with linear systems in Ch. 5
introduce nonlinearities in Ch. 6.

Two kinds of 2D problems:

@ variables are different things, rabbits, foxes,

@ cases where n = 2 comes from the second order equation, X = .. ..
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5 Linear systems

General twodimensional:

x1 = f(x,x),

X = f(x1,x).

Specialize to linear systems (with x; — x and x2 — y):

X = ax+ by,
y = cox+dy.
Matrix notation:
a b X
a=(a) ()
x = Ax
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Graphical analysis in 2D—(a) harmonic oscillator

Consider mx = —kx:

X=v, K
v=—w’x, w?=k/m.
m

which implies

(x,v) = (v, —w?x), a vector to each point (x, v).

To find a trajectory, put an
imaginary particle at (xp, vo)
and see how it is carried
around by the flow.

“Phase portrait”
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Graphical analysis in 2D—(b) uncoupled equations

(5)-(2 D)

Consider

{ X = ax
y=-y
Solved separaterly:
0 0
x(t) = xpe™, 220 L o A2

y(t) = ye ",
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Uncoupled equations. .. many different possible behaviors

(a) (b) “star”

N N VY

/I\a<—1 /‘\:—1 /‘\—1<a<0

(d) line of fixed points (e) saddle point
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Uncoupled equations. . . many different possible behaviors

(a) (b) “star” (c) (d) line of fixed points (e) saddle point
/’t\a<—1 /T\a:—l T 1<a<o0 T a=0 t 2>0

Stability language:
o (i) globally attracting as in a-c: all that starts near x* approach it as
t — oo.

o (ii) Liapunov stable — starting close to X* remains close for all times.
More terms:

o neutrally stable: (ii) but not (i). Examples: (d) and (0,0) in the
harmonic oscillator.

@ stable: both (i) and (ii).

@ unstable: neither (i) nor (ii).
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5.2 Classification of linear systems

In the uncoupled case the x— and y— axes had straight trajectories.
Starting on one of them we stayed on it forever.

NowwithA:<a b
c d

Put into x = Ax:

), look for trajectories x(t) = e*tv.

MMy =eMAv = Av=Av — eigenvalue equation

To determine the eigenvectors:

(3]

which is solved through the charcteristic equation,

det(A — Al) = 0.

d—\
N—7TA+A=0, wherer=TrA=a+d, A =detA=ad— bc.
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5.2 Classification of linear systems. .. cont'd

With 7 = TrA = a+ d and A = detA = ad — bc,

(a—A(d—=X)—bc=0 = X —Xa+d)+(ad—bc)=0,

this may be rewritten
N —TA+A=0,

with solutions

T 1
M=~ 4+ y/72—4A -
1= 5T 5VT ’ 272

Two eigenvectors: Avy = A1vi, Avy = dovs.

The eigenvalues are typically distinct, A\; # A». The eigenvectors are then
independent and span the plane. Any initial condition can then be written

X = vy + ova, = x(t) = ceMlvy + gelv,.
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5.2 Classification of linear systems. .. examples
Ex. 1 (5.2.1 and 5.2.2): Solve

x=x+y,
y =4x —2y.

A:(zll _§>:>7'=—17 A = —6 which gives A\ =2, A\ = —3.

Find eigenvectors, v = ( vf/l ):

0 (1-=2A\ 1 uy\ (I1-XNu+w

0/ 4 —2-—) w ) \du—Q2+Nw )’
This gives w = (A — 1)u which can be used to determine the
(unnormalized) eigenvectors:

)\1:2$V1:<1), )\2:—3:>V2:<_1).
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With A\; = 2 and \» = —3 together with

NOETSE

we get the phase portrait

V2
/ = This is a saddle point!
) / The stable manifold is the set of points
along +vs.
),//\ ( The unstable manifold is the set of points
along +vj.
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5.2 Classification of linear systems: Example 2

1
A1 = g + > 72 —4A, = complex when 4A > 72,

Consider

X=Xx—y, (1 1 T=2, M=1+1,
{Y:x—l—y, A_<1 1> T OA=2, 7 =1-i

The eigenvectors are

0 [1-2A -1 u [ (1=-Nu—-w 1

(o) =12 ) ()= (i ) = o
)\1:1—I'Z>V1:<_]I..>, )\2:1—i:>V2:<1i>.
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5.2 Classification. ..: Example 2, time dependence
The time dependence (with initial condition is given by

; 1 ; 1
x(t) = creMivy + ety = et [cle’t < _; ) + et ( ; )} ,
and the initial condition, xo = (xo, yo), then gives

xo=c+candy=—icg+icc = c2=(x=xiv)/2
We find

x(t) = 2T —g K0 eteit ( _11. ) + 20 _2 K0 pteit ( 1/ )

B X0 et e/t + e—lt . iyO ef elt _ e—lt
2 je”'t — je't 2 —ie™t —je'

This is a spiral out— combination of exponential growth and oscillation.
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5.2 General classification

With complex eigenvalues, A\15 = a £ iw, there are three possibilities:

@ «a < 0: spiral inwards,
@ a = 0: center (as for the harmonic oscillator)

@ « > 0: outward spiral.
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5.2 General classification

unstable nodes 2 4N =0

) unstable spirals
saddle points - centers ———
stable spirals

stable nodes
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5.2 General classification
’ 4N =12

unstable nodes

unstable spirals

centers ——

saddle points
stable spirals A

stable nodes

o If A < 0 the eivenvalues are real with opposite signs: saddle point.

e if A > 0: stable if 7 < 0 (node or spiral)
» when 4A < 72: eigenvalues real with the same sign (nodes)
» when 4A > 72: complex conjugate (spirals and centers)

Example: Classify the fixed point x* = 0 for x = Ax where A = ( ; i > !

Solution: the matrix has A =1 x 4 — 2 x 3 = —2; the fixed point is

therefore a saddle point.
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5.2 Classification. . . For equal eigenvalues!
Equal eigenvalues and only a single eigenvector, v;.
Try with x(t) = te* vy + e*v, and plug it into x = Ax:
e My + MteMvg + Aetvy = te’Avy + e Avs.
After dividing by e’ we get two equations:
Avi = Avy,

vi+Avo = Av,.

where vy is given by the solution to

[A - )\l]VQ = V1.

This means that x(t) = te’v; + e*vy will also be a solution and the

general solution becomes

x(t) = ce*vy + o(te*vy + eMva), = xo = vy + ova.

It follows that ¢, # 0 only if xg is not parallel to v;. Solution:

x(t) = e[xg + cotv1].
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