II Two-dimensional flows

Start with linear systems in Ch. 5 introduce nonlinearities in Ch .6 .

Two kinds of 2D problems:

- variables are different things, rabbits, foxes,
- cases where $n=2$ comes from the second order equation, $\ddot{x}=\ldots$.

5 Linear systems

General twodimensional:

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right), \\
& \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Specialize to linear systems (with $x_{1} \rightarrow x$ and $x_{2} \rightarrow y$):

$$
\begin{aligned}
\dot{x} & =a x+b y, \\
\dot{y} & =c x+d y .
\end{aligned}
$$

Matrix notation:

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \mathbf{x}=\binom{x}{y} . \\
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}
\end{gathered}
$$

Graphical analysis in 2D-(a) harmonic oscillator

Consider $m \ddot{x}=-k x$:

$$
\left\{\begin{array}{l}
\dot{x}=v, \\
\dot{v}=-\omega^{2} x, \quad \omega^{2}=k / m .
\end{array}\right.
$$

which implies

$$
(\dot{x}, \dot{v})=\left(v,-\omega^{2} x\right), \quad \text { a vector to each point }(x, v)
$$

To find a trajectory, put an imaginary particle at $\left(x_{0}, v_{0}\right)$ and see how it is carried around by the flow.
"Phase portrait"

Graphical analysis in 2D-(b) uncoupled equations

Consider

$$
\begin{aligned}
\binom{\dot{x}}{\dot{y}}= & \left(\begin{array}{rr}
a & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}, \\
& \left\{\begin{array}{l}
\dot{x}=a x \\
\dot{y}=-y
\end{array}\right.
\end{aligned}
$$

Solved separaterly:

$$
\begin{aligned}
& x(t)=x_{0} e^{a t}, \stackrel{a>0}{\stackrel{a>}{\longleftrightarrow}} \text { or } \quad \xrightarrow{a<0} \longleftrightarrow \\
& y(t)=y_{0} e^{-t}, \stackrel{\downarrow}{\uparrow}
\end{aligned}
$$

Uncoupled equations. . . many different possible behaviors

(b) "star"

(d) line of fixed points
(e) saddle point

Uncoupled equations. . . many different possible behaviors

(a)

(b) "star"

(c)

(d) line of fixed points

(e) saddle point

Stability language:

- (i) globally attracting as in a-c: all that starts near \mathbf{x}^{*} approach it as $t \rightarrow \infty$.
- (ii) Liapunov stable - starting close to \bar{x}^{*} remains close for all times.

More terms:

- neutrally stable: (ii) but not (i). Examples: (d) and $(0,0)$ in the harmonic oscillator.
- stable: both (i) and (ii).
- unstable: neither (i) nor (ii).

5.2 Classification of linear systems

In the uncoupled case the x - and y - axes had straight trajectories.
Starting on one of them we stayed on it forever.
Now with $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, look for trajectories $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$.
Put into $\dot{\mathbf{x}}=\mathbf{A x}$:

$$
\lambda e^{\lambda t} \mathbf{v}=e^{\lambda t} \mathbf{A} \mathbf{v} \quad \Rightarrow \quad \lambda \mathbf{v}=\mathbf{A} \mathbf{v} \quad — \text { eigenvalue equation }
$$

To determine the eigenvectors:

$$
\left[\mathbf{A}-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right] \mathbf{v}=0
$$

which is solved through the charcteristic equation,

$$
\begin{gathered}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 . \\
\operatorname{det}\left(\begin{array}{rr}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=0 \Rightarrow \quad(a-\lambda)(d-\lambda)-b c=0 \\
\lambda^{2}-\tau \lambda+\Delta=0, \quad \text { where } \tau=\operatorname{Tr} \mathbf{A}=a+d, \quad \Delta=\operatorname{det} \mathbf{A}=a d-b c .
\end{gathered}
$$

5.2 Classification of linear systems. . . cont'd

With $\tau=\operatorname{Tr} \mathbf{A}=a+d$ and $\Delta=\operatorname{det} \mathbf{A}=a d-b c$,

$$
(a-\lambda)(d-\lambda)-b c=0 \quad \Rightarrow \quad \lambda^{2}-\lambda(a+d)+(a d-b c)=0,
$$

this may be rewritten

$$
\lambda^{2}-\tau \lambda+\Delta=0
$$

with solutions

$$
\lambda_{1}=\frac{\tau}{2}+\frac{1}{2} \sqrt{\tau^{2}-4 \Delta}, \quad \lambda_{2}=\frac{\tau}{2}-\frac{1}{2} \sqrt{\tau^{2}-4 \Delta} .
$$

Two eigenvectors: $\mathbf{A} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}, \mathbf{A} \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}$.
The eigenvalues are typically distinct, $\lambda_{1} \neq \lambda_{2}$. The eigenvectors are then independent and span the plane. Any initial condition can then be written

$$
\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}, \quad \Rightarrow \quad \mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

5.2 Classification of linear systems. . . examples

Ex. 1 (5.2.1 and 5.2.2): Solve

$$
\left\{\begin{array}{c}
\dot{x}=x+y \\
\dot{y}=4 x-2 y
\end{array}\right.
$$

$\mathbf{A}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) \Rightarrow \tau=-1, \quad \Delta=-6 \quad$ which gives $\lambda_{1}=2, \quad \lambda_{2}=-3$.
Find eigenvectors, $\mathbf{v}=\binom{u}{w}$:

$$
\binom{0}{0}=\left(\begin{array}{rr}
1-\lambda & 1 \\
4 & -2-\lambda
\end{array}\right)\binom{u}{w}=\binom{(1-\lambda) u+w}{4 u-(2+\lambda) w} .
$$

This gives $w=(\lambda-1) u$ which can be used to determine the (unnormalized) eigenvectors:

$$
\lambda_{1}=2 \Rightarrow \mathbf{v}_{1}=\binom{1}{1}, \quad \lambda_{2}=-3 \Rightarrow \mathbf{v}_{2}=\binom{1}{-4}
$$

With $\lambda_{1}=2$ and $\lambda_{2}=-3$ together with

$$
\mathbf{v}_{1}=\binom{1}{1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{1}{-4}
$$

we get the phase portrait

This is a saddle point!
The stable manifold is the set of points along $\pm \mathbf{v}_{2}$.
The unstable manifold is the set of points along $\pm \mathbf{v}_{1}$.

5.2 Classification of linear systems: Example 2

$$
\lambda_{1,2}=\frac{\tau}{2} \pm \frac{1}{2} \sqrt{\tau^{2}-4 \Delta}, \quad \Rightarrow \quad \text { complex when } 4 \Delta>\tau^{2}
$$

Consider

$$
\left\{\begin{array}{l}
\dot{x}=x-y, \\
\dot{y}=x+y,
\end{array} \quad \mathbf{A}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right) \quad \Rightarrow \quad \begin{array}{l}
\tau=2, \\
\Delta=2,
\end{array} \quad \Rightarrow \quad \begin{array}{l}
\lambda_{1}=1+i, \\
\lambda_{2}=1-i
\end{array}\right.
$$

The eigenvectors are

$$
\begin{gathered}
\binom{0}{0}=\left(\begin{array}{rr}
1-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right)\binom{u}{w}=\binom{(1-\lambda) u-w}{u+(1-\lambda) w} \Rightarrow w=(1-\lambda) u . \\
\lambda_{1}=1-i \Rightarrow \mathbf{v}_{1}=\binom{1}{-i}, \quad \lambda_{2}=1-i \Rightarrow \mathbf{v}_{2}=\binom{1}{i}
\end{gathered}
$$

5.2 Classification. . . : Example 2, time dependence

The time dependence (with initial condition is given by

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=e^{t}\left[c_{1} e^{i t}\binom{1}{-i}+c_{2} e^{-i t}\binom{1}{i}\right]
$$

and the initial condition $\left.\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)\right)$ then gives
$x_{0}=c_{1}+c_{2}$ and $y_{0}=-i c_{1}+i c_{2} \quad \Rightarrow \quad c_{1,2}=\left(x_{0} \pm y_{0}\right) / 2$.
We find

$$
\begin{aligned}
\mathbf{x}(t) & =\frac{x_{0}+i y_{0}}{2} e^{t} e^{i t}\binom{1}{-i}+\frac{x_{0}-i y_{0}}{2} e^{t} e^{-i t}\binom{1}{i} \\
& =\frac{x_{0}}{2} e^{t}\binom{e^{i t}+e^{-i t}}{i e^{-i t}-i e^{i t}}+\frac{i y_{0}}{2} e^{t}\binom{e^{i t}-e^{-i t}}{-i e^{-i t}-i e^{i t}} \\
& =\binom{x_{0}}{y_{0}} e^{t} \cos t+\binom{-y_{0}}{x_{0}} e^{t} \sin t .
\end{aligned}
$$

This is a spiral out- combination of exponential growth and oscillation.

5.2 General classification

With complex eigenvalues, $\lambda_{1,2}=\alpha \pm i \omega$, there are three possibilities:

- $\alpha<0$: spiral inwards,
- $\alpha=0$: center (as for the harmonic oscillator)
- $\alpha>0$: outward spiral.

5.2 General classification

5.2 General classification

- If $\Delta<0$ the eivenvalues are real with opposite signs: saddle point.
- if $\Delta>0$: stable if $\tau<0$ (node or spiral)
- when $4 \Delta<\tau^{2}$: eigenvalues real with the same sign (nodes)
- when $4 \Delta>\tau^{2}$: complex conjugate (spirals and centers)

Example: Classify the fixed point $\mathbf{x}^{*}=0$ for $\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$! Solution: the matrix has $\Delta=1 \times 4-2 \times 3=-2$; the fixed point is therefore a saddle point.

5.2 Classification... For equal eigenvalues!

Equal eigenvalues and only a single eigenvector.
Try with $\mathbf{x}(t)=t e^{\lambda t} \mathbf{v}_{1}+e^{\lambda t} \mathbf{v}_{2}$ and plug it into $\dot{\mathbf{x}}=\mathbf{A x}$:

$$
e^{\lambda t} \mathbf{v}_{1}+\lambda t e^{\lambda t} \mathbf{v}_{1}+\lambda e^{\lambda t} \mathbf{v}_{2}=t e^{\lambda t} \mathbf{A} \mathbf{v}_{1}+e^{\lambda t} \mathbf{A} \mathbf{v}_{2}
$$

After dividing by $e^{\lambda t}$ we get two equations:

$$
\begin{aligned}
\lambda \mathbf{v}_{1} & =\mathbf{A} \mathbf{v}_{1}, \\
\mathbf{v}_{1}+\lambda \mathbf{v}_{2} & =\mathbf{A} \mathbf{v}_{2}
\end{aligned}
$$

whereas the second is given by the solution to

$$
[\mathbf{A}-\lambda \mathbf{I}] \mathbf{v}_{2}=\mathbf{v}_{1}
$$

This means that $\mathbf{x}_{2}(t)=t e^{\lambda t} \mathbf{v}_{1}+e^{\lambda t} \mathbf{v}_{2}$ will also be a solution and the general solution becomes

$$
\mathbf{x}(t)=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2}\left(t e^{\lambda t} \mathbf{v}_{1}+e^{\lambda t} \mathbf{v}_{2}\right), \quad \Rightarrow \quad \mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

It follows that $c_{2} \neq 0$ only if \mathbf{x}_{0} is not parallel to \mathbf{v}_{1}. Solution:

$$
\mathbf{x}(t)=e^{\lambda t}\left[\mathbf{x}_{0}+c_{2} t \mathbf{v}_{1}\right] .
$$

