
II Two-dimensional flows

Start with linear systems in Ch. 5
introduce nonlinearities in Ch. 6.

Two kinds of 2D problems:

variables are different things, rabbits, foxes,

cases where n = 2 comes from the second order equation, ẍ = . . ..
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5 Linear systems

General twodimensional:

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2).

Specialize to linear systems (with x1 → x and x2 → y):

ẋ = ax + by ,

ẏ = cx + dy .

Matrix notation:

A =

(
a b
c d

)
, x =

(
x
y

)
.

ẋ = Ax
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Graphical analysis in 2D—(a) harmonic oscillator

Consider mẍ = −kx :{
ẋ = v ,
v̇ = −ω2x , ω2 = k/m.

which implies

k

m

(ẋ , v̇) = (v ,−ω2x), a vector to each point (x , v).

To find a trajectory, put an
imaginary particle at (x0, v0)
and see how it is carried
around by the flow.
“Phase portrait”

x

v

x

v
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Graphical analysis in 2D—(b) uncoupled equations

Consider (
ẋ
ẏ

)
=

(
a 0
0 −1

)(
x
y

)
,{

ẋ = ax
ẏ = −y

Solved separaterly:

x(t) = x0e
at ,

a > 0
or

a < 0

y(t) = y0e
−t , .
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Uncoupled equations. . . many different possible behaviors

a < −1

(a)

a = −1

(b) “star”

−1 < a < 0

(c)

a = 0

(d) line of fixed points

a > 0

(e) saddle point
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Uncoupled equations. . . many different possible behaviors

a < −1

(a)

a = −1

(b) “star”

−1 < a < 0

(c)

a = 0

(d) line of fixed points

a > 0

(e) saddle point

Stability language:

(i) globally attracting as in a-c: all that starts near x∗ approach it as
t → ∞.

(ii) Liapunov stable — starting close to x̄∗ remains close for all times.

More terms:

neutrally stable: (ii) but not (i). Examples: (d) and (0,0) in the
harmonic oscillator.

stable: both (i) and (ii).

unstable: neither (i) nor (ii).
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5.2 Classification of linear systems
In the uncoupled case the x− and y− axes had straight trajectories.
Starting on one of them we stayed on it forever.

Now with A =

(
a b
c d

)
, look for trajectories x(t) = eλtv.

Put into ẋ = Ax:

λeλtv = eλtAv ⇒ λv = Av — eigenvalue equation

To determine the eigenvectors:[
A− λ

(
1 0
0 1

)]
v = 0,

which is solved through the charcteristic equation,

det(A− λI) = 0.

det

(
a− λ b

c d − λ

)
= 0 ⇒ (a− λ)(d − λ)− bc = 0.

λ2 − τλ+∆ = 0, where τ = TrA = a+ d , ∆ = detA = ad − bc.
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5.2 Classification of linear systems. . . cont’d

With τ = TrA = a+ d and ∆ = detA = ad − bc,

(a− λ)(d − λ)− bc = 0 ⇒ λ2 − λ(a+ d) + (ad − bc) = 0,

this may be rewritten
λ2 − τλ+∆ = 0,

with solutions

λ1 =
τ

2
+

1

2

√
τ2 − 4∆, λ2 =

τ

2
− 1

2

√
τ2 − 4∆.

Two eigenvectors: Av1 = λ1v1, Av2 = λ2v2.

The eigenvalues are typically distinct, λ1 ̸= λ2. The eigenvectors are then
independent and span the plane. Any initial condition can then be written

x0 = c1v1 + c2v2, ⇒ x(t) = c1e
λ1tv1 + c2e

λ2tv2.
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5.2 Classification of linear systems. . . examples
Ex. 1 (5.2.1 and 5.2.2): Solve{

ẋ = x + y ,
ẏ = 4x − 2y .

A =

(
1 1
4 −2

)
⇒ τ = −1, ∆ = −6 which gives λ1 = 2, λ2 = −3.

Find eigenvectors, v =

(
u
w

)
:

(
0
0

)
=

(
1− λ 1

4 −2− λ

)(
u
w

)
=

(
(1− λ)u + w

4u − (2 + λ)w

)
.

This gives w = (λ− 1)u which can be used to determine the
(unnormalized) eigenvectors:

λ1 = 2 ⇒ v1 =

(
1
1

)
, λ2 = −3 ⇒ v2 =

(
1

−4

)
.
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With λ1 = 2 and λ2 = −3 together with

v1 =

(
1
1

)
and v2 =

(
1

−4

)
we get the phase portrait

v1
v2

This is a saddle point!
The stable manifold is the set of points
along ±v2.
The unstable manifold is the set of points
along ±v1.
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5.2 Classification of linear systems: Example 2

λ1,2 =
τ

2
± 1

2

√
τ2 − 4∆, ⇒ complex when 4∆ > τ2.

Consider{
ẋ = x − y ,
ẏ = x + y ,

A =

(
1 −1
1 1

)
⇒ τ = 2,

∆ = 2,
⇒ λ1 = 1 + i ,

λ2 = 1− i .

The eigenvectors are(
0
0

)
=

(
1− λ −1

1 1− λ

)(
u
w

)
=

(
(1− λ)u − w
u + (1− λ)w

)
⇒ w = (1−λ)u.

λ1 = 1− i ⇒ v1 =

(
1

−i

)
, λ2 = 1− i ⇒ v2 =

(
1
i

)
.

Peter Olsson (Ume̊a University) Lecture 3: Chapter 5 September 6, 2024 11 / 16



5.2 Classification. . . : Example 2, time dependence
The time dependence (with initial condition is given by

x(t) = c1e
λ1tv1 + c2e

λ2tv2 = et
[
c1e

it

(
1

−i

)
+ c2e

−it

(
1
i

)]
,

and the initial condition, x0 = (x0, y0), then gives
x0 = c1 + c2 and y0 = −ic1 + ic2 ⇒ c1,2 = (x0 ± iy0)/2.

We find

x(t) =
x0 + iy0

2
ete it

(
1

−i

)
+

x0 − iy0
2

ete−it

(
1
i

)
=

x0
2
et

(
e it + e−it

ie−it − ie it

)
+

iy0
2
et

(
e it − e−it

−ie−it − ie it

)
=

(
x0
y0

)
et cos t +

(
−y0
x0

)
et sin t.

This is a spiral out— combination of exponential growth and oscillation.
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5.2 General classification

With complex eigenvalues, λ1,2 = α± iω, there are three possibilities:

α < 0: spiral inwards,

α = 0: center (as for the harmonic oscillator)

α > 0: outward spiral.
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5.2 General classification

saddle points
unstable spirals

stable spirals
centers

∆

stable nodes

unstable nodes
τ

τ2 − 4∆ = 0
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5.2 General classification

saddle points
unstable spirals

stable spirals
centers

∆

stable nodes

unstable nodes
τ

4∆ = τ2

If ∆ < 0 the eivenvalues are real with opposite signs: saddle point.

if ∆ > 0: stable if τ < 0 (node or spiral)
▶ when 4∆ < τ 2: eigenvalues real with the same sign (nodes)
▶ when 4∆ > τ 2: complex conjugate (spirals and centers)

Example: Classify the fixed point x∗ = 0 for ẋ = Ax where A =

(
1 2
3 4

)
!

Solution: the matrix has ∆ = 1× 4− 2× 3 = −2; the fixed point is
therefore a saddle point.
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5.2 Classification. . . For equal eigenvalues!
Equal eigenvalues and only a single eigenvector, v1.

Try with x(t) = teλtv1 + eλtv2 and plug it into ẋ = Ax:

eλtv1 + λteλtv1 + λeλtv2 = teλtAv1 + eλtAv2.

After dividing by eλt we get two equations:

λv1 = Av1,

v1 + λv2 = Av2.

where v2 is given by the solution to

[A− λI]v2 = v1.

This means that x2(t) = teλtv1 + eλtv2 will also be a solution and the
general solution becomes

x(t) = c1e
λtv1 + c2(te

λtv1 + eλtv2), ⇒ x0 = c1v1 + c2v2.

It follows that c2 ̸= 0 only if x0 is not parallel to v1. Solution:

x(t) = eλt [x0 + c2tv1].
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