2.4 Linear stability analysis

We now turn to a mathematical method to determine the character of a fixed point.

Notation for a fixed point: x^* with $f(x^*) = 0$.

Consider a small deviation from a fixed point. Does this deviation grow or decay with time?

$$\eta(t) = x(t) - x^*, \quad \dot{x} = f(x), \\ \dot{\eta} = \dot{x}, \quad \text{since } \dot{x}^* = 0.$$

This gives... with a Taylor expansion

$$\dot{\eta} = f(x) = f(x^* + \eta) = f(x^*) + \eta f'(x^*) + O(\eta^2),$$

If $f'(x^*) \neq 0$:

$$\dot{\eta} = \eta f'(x^*)$$
 — linearization about x^* .

2.4 Linear stability analysis... cont'd

The perturbation η ...

- grows exponentially if $f'(x^*) > 0$,
- decays if $f'(x^*) < 0$,

Compare with the graphical analysis:

unstable fixed point, stable fixed point.

< □ > < □ > < □ > < □ > < □ > < □ >

(If $f'(x^*) = 0$ we need a nonlinear analysis to determine the stability.)

From
$$\dot{\eta}=\eta f'(x^*)$$
 we get

$$\eta(t) = \eta_0 e^{f'(x^*)t}, \quad$$
characteristic time scale $1/|f'(x^*)|.$

This is the time required for x(t) to vary significantly in the neighborhood of x^* .

2.5 Existence and uniqueness

One can run into troubles if f(x) behaves badly, e.g. $f'(0) \to \infty$. This is seldom a problem in physics.

< 4[™] >

2.6 Impossibility of oscillations

An oscillation means that \dot{x} can have different signs for the same x.

This is not possible if the dynamics is governed by

 $\dot{x}=f(x),$

we thus conclude that there cannot be oscillations in a first order system.

Lecture 1: Chapter 1.2–1.3

3. Bifurcations-the splitting into two branches

One-dimensional problems: $x(t) \rightarrow \text{const or } x(t) \rightarrow \pm \infty$. Boring!!

What is interesting about one-dimensional systems is the *dependence on parameters*!

3.1 Saddle node bifurcation

("saddle" makes sense in 2D, p. 242.)

The basic mechanism by which fixed points are created and destroyed.

Lecture 1: Chapter 1.2–1.3

3.1 Saddle node bifurcation...cont'd

This can be illustrated in different ways:

More common to rotate the diagram:

3.1 Saddle node bifurcation...cont'd

Two more points:

- Note that $f(x) = r x^2$ also has a saddle-point bifurcation.
- The same is true for any function with a minimum or maximum.

An example that illustrates this is the insect outbreak model that we are turning to next.

3.7 Insect outbreak

The dynamics is given by

$$\frac{dN}{dt} = r_B N \left(1 - \frac{N}{K_B} \right) - p(N),$$

where p(N) represents predation by birds.

$$p(N) = \frac{BN^2}{A^2 + N^2}$$

which has a change from low to high predation at an approximate threshold value $N_c = A$. The dynamics now becomes

$$\frac{dN}{dt} = r_B N \left(1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2}.$$

3.7 Insect outbreak... Nondimensionalisation

With four parameters, r_B , K_B , B, and A and it is difficult to analyze the model. To simplify things we introduce the dimensionless quantities

$$u = \frac{N}{A}, \quad r = \frac{Ar_B}{B}, \quad q = \frac{K_B}{A}, \quad \tau = \frac{Bt}{A},$$

which leads to the equation

$$\frac{du}{d\tau} = ru\left(1-\frac{u}{q}\right) - \frac{u^2}{1+u^2} = f(u;r,q).$$

- Two parameters r and q which are pure numbers.
- The time scale is also changed.
- (Also other possible ways to make things dimensionless.)

3.7 Insect outbreak... Fixed points

- The fixed points are where f(u) = 0.
- Three nontrivial solutions: u_1^* , u_2^* , u_3^* .
- Stable of unstable? Examine $f'(u^*)!$
 - Here $du/d\tau = f(u; r, q)$.
 - Consider the sign of $\partial f / \partial u$.
 - * $u_1: f'(u_1) < 0$ stable. * $u_2: f'(u_2) > 0$ — unstable. * $u_3: f'(u_3) < 0$ — stable.

How will things change with the parameters, r and q?

Lecture 1: Chapter 1.2–1.3

3.7 Insect outbreak... Innovative graphical solution

- The right hand side is a curve with a non-trivial shape, independent of *r* and *q*.
- The left hand side depends on the parameters but is simply a straight line from (0, r) to (q, 0).
- The solutions are given by the intersections of these curves. Different *r* and *q* give different straight lines and either one or three solutions.

3.7 Insect outbreak... The effect of changing the parameters

Three solutions for $r_l \leq r \leq r_h$. Otherwise only one solution.

u

What is the effect of a gradual change of the parameter r?

It turns out that we get a hysteretical behavior.

(It could be that r changes gradually because of changes in the environment.)

3.7 Insect outbreak... The effect of changing the parameters

Consider a gradual change of r from a small value to $r > r_h$ and back again!

- When r > r_h the fixed point u₁^{*} disappears. The system jumps to u₃^{*}.
- When r < r_h not much happens; the system remains at u₃^{*}.
- When r < r_l the fixed point u₃^{*} disappears and the system jumps back to u₁^{*}.

The behavior above show the mechanism behind a tipping point:

- Things first just change gradually and slowly,
- When a parameter exceeds some critical value the system jumps to a different fixed point.
- Even if the parameter could be lowered below that critical value, the system could be stuck at this new fixed point.

Next lecture (Friday)

- 5. Linear systems with n = 2.
 - harmonic oscillator,
 - uncoupled equations,
 - classifications of linear systems,

Compare with the classification:

	n = 1	<i>n</i> = 2	$n \ge 3$	$n \gg 1$	continuum
lin-	growth, decay	oscillations		solid state	elasticity,
ear	or equilibrium			physics	wave eqs
non-	Fixed points,	pendulum,	chaos,	research	
lin-	bifurcations	limit cycles	strange	problems	
ear			attractors	of today	