
2.4 Linear stability analysis
We now turn to a mathematical method to determine the character of a
fixed point.

Notation for a fixed point: x∗ with f (x∗) = 0.

Consider a small deviation from a fixed point. Does this deviation grow or
decay with time?

η(t) = x(t)− x∗, ẋ = f (x),

η̇ = ẋ , since ẋ∗ = 0.

This gives. . . with a Taylor expansion

η̇ = f (x) = f (x∗ + η) = f (x∗) + ηf ′(x∗) + O(η2),

If f ′(x∗) 6= 0:

η̇ = ηf ′(x∗) — linearization about x∗.
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2.4 Linear stability analysis. . . cont’d

The perturbation η. . .

grows exponentially if f ′(x∗) > 0, unstable fixed point,

decays if f ′(x∗) < 0, stable fixed point.

Compare with the graphical analysis:
x

f (x)

(If f ′(x∗) = 0 we need a nonlinear analysis to determine the stability.)

From η̇ = ηf ′(x∗) we get

η(t) = η0e
f ′(x∗)t , characteristic time scale 1/|f ′(x∗)|.

This is the time required for x(t) to vary significantly in the neighborhood
of x∗.
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2.5 Existence and uniqueness

One can run into troubles if f (x) behaves badly, e.g. f ′(0)→∞.

This is seldom a problem in physics.
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2.6 Impossibility of oscillations

An oscillation means that ẋ can have different signs for the same x .

t

x

ẋ < 0

ẋ > 0

This is not possible if the dynamics is governed by

ẋ = f (x),

we thus conclude that there cannot be oscillations in a first order system.
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3. Bifurcations—the splitting into two branches

One-dimensional problems: x(t)→const or x(t)→ ±∞.
Boring!!

What is interesting about one-dimensional systems is the
dependence on parameters!
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3.1 Saddle node bifurcation

(“saddle” makes sense in 2D, p. 242.)

The basic mechanism by which fixed points are created and destroyed.

ẋ = r + x2, parameter r .

stable and unstable

r < 0

half-stable

r = 0

no fixed point

r > 0
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3.1 Saddle node bifurcation. . . cont’d

This can be illustrated in different ways:

r > 0

r = 0

r < 0

r

x

stable unstable

More common to rotate the diagram:

r

x

stable

unstable
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3.1 Saddle node bifurcation. . . cont’d

Two more points:

Note that f (x) = r − x2 also has a saddle-point bifurcation.

The same is true for any function with a minimum or maximum.

An example that illustrates this is the insect outbreak model that we are
turning to next.
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3.7 Insect outbreak
The dynamics is given by

dN

dt
= rBN

(
1− N

KB

)
− p(N),

where p(N) represents predation by
birds. 100 101 102 103 104
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We now specialize to the following form for predation:

p(N) =
BN2

A2 + N2

which has a change from low to high predation at an approximate
threshold value Nc = A. The dynamics now becomes

dN

dt
= rBN

(
1− N

KB

)
− BN2

A2 + N2
.
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3.7 Insect outbreak. . . Nondimensionalisation

With four parameters, rB , KB , B, and A and it is difficult to analyze the
model. To simplify things we introduce the dimensionless quantities

u =
N

A
, r =

ArB
B
, q =

KB

A
, τ =

Bt

A
,

which leads to the equation

du

dτ
= ru

(
1− u

q

)
− u2

1 + u2
= f (u; r , q).

Two parameters r and q which are pure numbers.

The time scale is also changed.

(Also other possible ways to make things dimensionless.)
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3.7 Insect outbreak. . . Fixed points

The fixed points are where f (u) = 0.

Three nontrivial solutions: u∗1 , u∗2 , u∗3 .

Stable of unstable? Examine f ′(u∗)!

I Here du/dτ = f (u; r , q).

I Consider the sign of ∂f /∂u.

F u1: f
′(u1) < 0 — stable.

F u2: f
′(u2) > 0 — unstable.

F u3: f
′(u3) < 0 — stable.
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How will things change with the parameters, r and q?
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3.7 Insect outbreak. . . Innovative graphical solution
The steady states are solutions of

f (u; r , q) = 0⇒ ru

(
1− u

q

)
=

u2

1 + u2
.

Look for the solutions to

r

(
1− u

q

)
=

u

1 + u2
.

0 10 20
0.0

0.2

0.4

0.6

r
(

1− u
q

)
u

1+u2

u

The right hand side is a curve with a non-trivial shape, independent
of r and q.

The left hand side depends on the parameters but is simply a straight
line from (0, r) to (q, 0).

The solutions are given by the intersections of these curves. Different
r and q give different straight lines and either one or three solutions.
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3.7 Insect outbreak. . . The effect of changing the
parameters

Three solutions for rl ≤ r ≤ rh. Otherwise only one solution.

rl

rh

u

What is the effect of a gradual change of the parameter r?

It turns out that we get a hysteretical behavior.

(It could be that r changes gradually because of changes in the
environment.)
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3.7 Insect outbreak. . . The effect of changing the
parameters

Consider a gradual change of r from a small value to r > rh and back
again!
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When r > rh the fixed point u∗1
disappears. The system jumps to u∗3 .

When r < rh not much happens; the
system remains at u∗3 .

When r < rl the fixed point u∗3
disappears and the system jumps
back to u∗1 .

rl rh

↓
↑

u1

u3
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3.7 Insect outbreak. . . Concern for the environment

The behavior above show the mechanism behind a tipping point:

Things first just change gradually and slowly,

When a parameter exceeds some critical value the system jumps to a
different fixed point.

Even if the parameter could be lowered below that critical value, the
system could be stuck at this new fixed point.
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Next lecture (Friday)

5. Linear systems with n = 2.

harmonic oscillator,

uncoupled equations,

classifications of linear systems,

Compare with the classification:
n = 1 n = 2 n ≥ 3 n� 1 continuum

lin- growth, decay oscillations solid state elasticity,
ear or equilibrium physics wave eqs

non- Fixed points, pendulum, chaos, research
lin- bifurcations limit cycles strange problems
ear attractors of today
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