
Where to find these pages

The lecture notes from my teaching are at our local web server:

www.tp.umu.se/ModSim/L-notes

(where “tp” stands for “theoretical physics”.)
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1. Introduction

Dynamical systems

Strogatz, Nonlinear dynamics and chaos, Ch. 1–3, 5–7.

Fun and interesting.

All kinds of applications! (Epidemiology, geophysics, fluid dynamics,
materials science, engineering).

Strogatz Ch 1.0 and 1.1: Historical notes—read yourselves.
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1.2 The importance of being nonlinear
Four important points!

a Two kinds of dynamical systems:
I Differential equations, ẋ = f (x), → x(t).
I Difference equations, xn+1 = f (xn), → x0, x1, x2, . . ..

b We discuss ordinary differential equations:

ẋ1 = f1(x1, x2, . . . , xn),

ẋ2 = f2(x1, x2, . . . , xn),

·
ẋn = fn(x1, x2, . . . , xn),

I Not partial differential equations ∂u
∂t = ∂2u

∂x2 .
I Not stochastic differential equation. (That comes in “Stochastic

simulations”, 22-29/9.)
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c We discuss first order equations.
Therefore: rewrite second order equations, ẍ = ax :
Let x → x1 and x2 = ẋ1 ⇒ ẋ2 = ẍ1.
Written in standard form: {

ẋ2 = ax1,
ẋ1 = x2.

Two equations ⇒ n = 2.
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d Linear or nonlinear? Linear:

ẋ1 = x2,
ẋ2 = ax1 + bx2,

}
linear—all x appear to first order only

Nonlinear:

ẍ = −g

L
sin x , nonlinear—since ”sin x” is a nonlinear function.

This is the equation for the pendulum. From F = mv̇ with

v = Lθ̇,
F = −mg sin θ,

}
from the geometry of the problem.
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(d) Linear or nonlinear?. . . cont’d

θ̈ = −g

L
sin θ.

How do we solve this?

Cheat: Consider small θ only ⇒ sin θ → θ ⇒ linear problem

θ̈ = −g

L
θ.

Here: Keep the nonlinearity! Extract information about the system
with graphical methods without actually solving the system.
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Why are nonlinear problems so difficult?

Consider linear systems:

Linear systems can be broken into parts. . .

each part can be solved separately. . .

and finally recombined to get the answer.

This gives a fantastic simplification of complex problems,
e.g. with Fourier analysis.

This isn’t possible with nonlinear problems and that is why they are so
difficult.
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1.3 Classify problems—n and linear/nonlinear

n = 1 n = 2 n ≥ 3 n� 1 continuum

lin- growth, decay oscillations solid state elasticity,
ear or equilibrium physics wave eqs

non- Fixed points, pendulum, chaos, research
lin- bifurcations limit cycles strange problems
ear attractors of today

The simplest systems are in the upper left corner.

Also familiar is the upper right corner. Partial differential equations,
Maxwell’s equations, Schrödinger’s equation. (Infinite continuum.)

This course focuses on the lower left corner. Start with n = 1 and
move to the right.

The lower right corner—many problems for today’s research.
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Part 1—One-dimensional flows, n = 1
The general case:

ẋ1 = f1(x1, x2, . . . , xn),

·
ẋn = fn(x1, x2, . . . , xn).

Now focus on only one variable:

ẋ = f (x).

Here

x(t) is a real-valued function of time.

f (x) is a smooth real-valued function of x .

Note:

f (x) may not depend on time,

in our terminology f (x , t) would be a two-dimensional system.
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2.1 A geometric way of thinking

Pictures are often more helpful than formulas!

Consider
ẋ = sin x , x(0) ≡ x0,

which can be solved analytically.

t = ln

∣∣∣∣csc x0 + cot x0

csc x + cot x

∣∣∣∣ .
That doesn’t help much!

1 Suppose x0 = π/4. Describe x(t) qualitatively. What happens as
t →∞?

2 For arbitrary x0 what happens as t →∞?
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Graphical analysis

We are most used at plotting x(t):

t

x

We will here use a different kind of plot: ẋ vs x .

x

ẋ

π

Here ẋ represents the vector field on the line; the velocity at each given x
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Put arrows on the axis to indicate the flow direction!

x

ẋ

π

Points with ẋ = 0 — fixed points.

Two kinds of fixed points:

Solid dots: stable fixed points—flow towards the fixed point.

Open dots: unstable fixed points—flow out from the fixed point.
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This picture helps to qualitatively understand the solution to ẋ = sin x .

x

ẋ

−π π
x0

A particle starting at
x = x0 ≡ π/4 moves to the
right faster and faster until it
reaches x = π/2.

When x > π/2 it slows down
and gradually approaches x = π.

0
0

1

2

3

π
4

t

x
(t
)

The same method may be used for any starting point:

With x0 = −0.5 we would end up at x = −π,

x0 = 3π/2 takes us to x = π.

(Limitation:Not much quantitative information.)
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2.2 Fixed points and stability

This idea can be used for any ẋ = f (x):

Draw the graph f (x),

construct the vector field,

locate the fixed points.

x

ẋ f (x)

A figure with the flows and the fixed points is called “phase portrait”.

(This becomes even more useful and interesting in the two-dimensional
case.)
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2.3 Population growth

Models for population growth — births and deaths in proportion to the
size of the population.

Simplest model for population growth (linear):

Ṅ = rN, N(t) — population at time t.

N

Ṅ Ṅ = rN

Solution: N(t) = N0e
rt . (Check: dN/dt = N0re

rt = rN(t)).

Not realistic for large times!
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2.3 Population growth. . . cont’d

Every system has a carrying capacity, K .

Let the growth rate depend on N.

N

r

here r < 0K

N

r

K

Mathematically convenient,
the logistic equation:

Ṅ = rN

(
1− N

K

)
.
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2.3 Population growth. . . cont’d

Graphical analysis of

Ṅ = rN

(
1− N

K

)
.

N

Ṅ

K

Solutions for three different N0:

0.0

0.5

1.0

1.5

t

N
(t
)
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Next lecture:

2.4 Linear stability analysis.

(2.5 Existence and uniqueness.)

2.6 Impossibility of oscillations.

3.1 Bifurcations—how things can change with a change in a
parameter.

3.7 Application: insect outbreak.
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