Diffraktion och interferens

Laboration i kursen El- och vågrörelselära, 6 hp

Syfte

Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel på hur interferens och diffraktion kan användas i mät- och karaktäriseringsmetoder. Genom att skriva en utförlig laborationsrapport tränas du i att bearbeta ny kunskap, formulerka den, kritiskt granska dina resonemang och kommunicera kunskap till andra.

Mål

Innehåll

1 Introduktion...2
2 Teori...2
 2.1 Enkelspalt...2
 2.2 Dubbelspalt...3
 2.3 Gitter...4
 2.4 Cirkulärt hål...5
3 Utrustning..5
4 Uppgifter..5
 4.1 Moment 1..5
 Spaltbredd..5
 Intensitet...5
 Gitterkonstant..6
 Cirkulärt hål..6
 4.2 Moment 2..6
 Brytningsindex...6
BILAGA 1 – Laborationsguide (genomförande)..7
 Inställning av fotodiod...7
BILAGA 2 - Beräkningstabeller ..8
1 Introduktion

Interferensfenomenet uppkommer då två eller fler vågor överlappar varandra, baserat på superpositionsprincipen.

Diffraction är något man stöter på vid mikroskopi. Detta fenomen avgör vad man kan upplösa, alltså den minsta struktur man kan urskilja. Upplösningen (diffракtionsgränsen) hos ett mikroskop ligger på ungefär halva våglängden av det ljus som används i det. Intervallet av våglängder som det mänskliga ögat kan uppfatta, och som alltså kan användas i ett ljusmikroskop, ligger mellan 400 nm (blått ljus) till 700 nm (rött ljus). Inom biologin används röntgenkristallografi för att studera makrostrukturer hos t.ex. proteiner. Röntgen-kristallografi är baserat på diffraction av kortvägig strålning (röntgenstrålning) i proteinets struktur. Väteatomernas läge i kristalliserade proteiner kan bestämmas genom diffraction av neutroner.

2 Teori

Teorin bakom uttryckten som ges nedan finns att läsa om i kapitel 38 och 39 i kursboken.

2.1 Enkelspalt

Intensitetsuttrycket för Fraunhoferdiffraction\(^1\) i en enkelspalt ges av

\[
I = I_0 \left(\frac{\sin \beta}{\beta} \right)^2, \tag{1}
\]

där

\[
\beta = \frac{b \pi \sin \Theta}{\lambda}. \tag{2}
\]

\(I_0\) är intensiteten vid centralmaximat, \(b\) är enkelspaltens bredd, \(\Theta\) är diffraktionsvinkeln och \(\lambda\) är ljusets våglängd. Intensitetsfördelningen som funktion av vinkeln i radianer illustreras i Fig. 1. Man kan visa att intensitetsfunktionen har minimum då

\[
\beta = \pm \pi, \pm 2 \pi, \ldots \tag{3}
\]

och maximum då

\[
\tan \beta = \beta. \tag{4}
\]

\(^1\) Fraunhoferdiffraction innebär att ljuskällan är placerad oändligt långt borta från diffractionsobjektet. Detta medför att vågorna kan ses som plana, vilket även är fallet med en HeNe-laser.
2.2 Dubbelspalt

Intensitetsfördelningen efter en dubbelspalt är

\[I = 4I_0 \left(\frac{\sin \beta}{\beta} \right)^2 \cdot \cos^2(f \beta), \]

(5)

där \(\beta \) ges av Ekv. 2. Vidare är

\[f = \frac{a}{b}, \]

(6)

där \(a \) betecknar spaltavståndet för dubbelspalten.

Jämförelse mellan uttrycken för intensitetsfördelningarna efter en enkelspalt och en dubbelspalt visar att intensitetsfördelningen efter dubbelspalten är uppbyggd av diffractionsdelen från enkelspalten och en interferensdel från två koherenta källor (de båda spalterna).

Intensiteten kommer att ha sitt maximum då

\[\sin \Theta \approx m \frac{1}{a}, \]

(7)

där

2 I Ekv. 5 och 9 finns en faktor 4 med, som innebär att intensiteten i centralmaximat är fyra gånger starkare efter dubbelspalt/gitter än efter enkelspalt.
Figur 2. Diffraktionsmönster från en dubbelspalt.

2.3 Gitter

Om plana vågor passerar ett gitter ges intensitetsfördelningen efter gittet av

\[I = 4I_0 \left(\frac{\sin \beta}{\beta} \right)^2 \left(\frac{\sin(Nf\beta)}{\sin(f\beta)} \right)^2, \]

där \(N \) är antalet spalter. Även här beskriver den första delen diffraktion från enkelspalten medan den andra beskriver interferensmönstret från \(N \) stycken koherenta källor.

Vid ett stort antal spalter kommer mönstret att visa smala starka maxima (huvudmaxima) för samma vinklar \(\Theta \) som beskrivs i Ekv. 7 och 8, men det kommer också att upptvisa ljussvaga sidomaxima då

\[a \sin \Theta \approx \left(k + \frac{1}{2} \right) \cdot \frac{\lambda}{N}, \]

där

\[k = 1,2,3,... \]

och \(a \) betecknar gitterkonstanten. Dessa sidomaxima kommer att undertryckas av diffraktion i enkelspalten.
2.4 Cirkulärt hål
Om plana vågor passerar ett cirkulärt hål med diameter d, gäller för första intensitets-minimum att

$$\sin \theta = 1,22 \frac{\lambda}{d}. \quad (12)$$

3 Utrustning
Laborationsuppställningen tillhandahåller följande utrustning:

- En rörlig fotodiod för mätning av intensitetsfördelning
- Skrivare med förstärkare
- He-Ne-laser med våglängd $\lambda=633$ nm
- Enkelspalt, dubbelspalt, gitter samt cirkulärt hål, fastsatta i diabildshållare
- Vit skärm
- Plexiglasvanna
- Optisk räls för fastsättning av ryttare
- Linjal

Ni måste själva se till att ni medtar övrig utrustning som krävs för beräkningar etc. Sådan utrustning är till exempel kursbok, formelsamling, räknare, usb-minne, penna och papper.

4 Uppgifter
4.1 Moment 1
Spaltbredd
Skapa ett intensitetspektrum genom att skicka en laserstråle genom en enkelspalt med spaltbredd 0.08 mm. Verifiera spaltbredden genom experimentella beräkningar med data från intensitetsfördelningen. Genomförandet är beskrivet i Bilaga 1 – Laborationsguide. Fyll in dina resultat i Bilaga 2 – Beräkningstabeller. Gör en matematisk felskattning av det beräknade värdet på spaltbredden.

Intensitet
Ta fram det teoretiska förhållandet mellan topparnas intensitet vid enkel respektive dubbelspalt. Skriv in värdena i en tabell och jämför dem med experimentellt uppmätta värden.\(^3\) Bestäm den teoretiska intensitetsfördelningen som funktion av böjningsvinkeln Θ, alltså $I = I(\Theta)$, för enkel respektive dubbelspalt. Verifiera uttrycket experimentellt genom att mäta avstånden mellan intensitetstopparna. Hitta ett uttryck för intensiteten i varje maximum som en kvot mellan sidomaxima $I_m = I_1, I_2$ samt I_3 och centralmaximum, I_0, i båda fallen och verifiera värdena experimentellt.

\(^3\) Den experimentella mätningen av intensitetsfördelningen skall göras dels genom att mäta höjden på topparna, dels genom att mäta vinkeln till de olika maxima.
Gitterkonstant
Montera gittret med gitterkonstant $a=10 \text{ mm}^{-1}$. Verifiera experimentellt gitterkonstanten för gittret genom mätningar på intensitetsfördelningen. Gör en matematisk felskattning av det beräknade värdet på gitterkonstanten.

Cirkulärt hål
Om ljus med våglängd λ passerar ett cirkulärt hål med diametern d, gäller att första intensitetsminimum uppfyller Ekv. (8).Verifiera detta experimentellt. Välj hålet med $d = 0.3 \text{ mm}$.

Extrauppgifter i mån av tid
Bestäm tjockleken på ett av dina hårstrån och avstånden mellan spåren på en CD-skiva.

4.2 Moment 2.
Brytningsindex
Bestäm brytningsindex för vatten genom att placera en vanna med vatten (ett stort, rektangulärt kärl med väggar av genomskinlig plast) mellan lasern och fotodioden. Innan laborationen genomförs skall du beskriva hur du tänker genomföra experimentet.
BILAGA 1 – Laborationsguide (genomförande)

Inställning av fotodiod

2) Placera det objekt som skall användas, spalt, gitter eller hål, på lämpligt avstånd från fotodioden. Interferensmönstret skall rymmas med god marginal inom längdskalan för dioden.

3) Justera höjden på fotodioden så att intensitetsmaximum träffar i centrum på dioden. För fotodioden fram och tillbaka och observera interferensmönstret. Om mönstret är snett i horisontalled innebär det att spalten är snett fastsatt. Justera det i så fall.

4) Starta av laborationshandledaren angivet program i Labview. Starta en mätning. Reglera spänningen på strömkällan till fotodiodens motor så att dioden rör sig tillräckligt långsamt för att mätningen ska ge bra resultat. Lämplig spänning ligger kring 4 V.

5) För att man skall kunna översätta en viss sträcka på datorskärmens mot den verkliga sträcka som fotodioden har rört sig måste man ta fram en konverteringskonstant. Detta gör man enklast genom att mäta den sträcka som fotodioden har rört sig och relatera den till motsvarande upprätande längd i x.led i datorprogrammet.

BILAGA 2 - Beräkningstabeller

Tabell 1. ENKELSPALTBREDD

<table>
<thead>
<tr>
<th>Ordning m</th>
<th>Intensitetfördelning teoretiskt (I_m/I_0)</th>
<th>Vinkel från m = 0 till sidomaxima m ≠ 0 [rad]</th>
<th>Intensitetfördelning experimentellt (I_m/I_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-centralmaxima</td>
<td></td>
<td>Med hjälp av vinkeln</td>
<td></td>
</tr>
<tr>
<td>1-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2. INTENSITETSFÖRDELNING ENKELSPALT

<table>
<thead>
<tr>
<th>Ordning m</th>
<th>Intensitetfördelning teoretiskt (I_m/I_0)</th>
<th>Vinkel från m = 0 till sidomaxima m ≠ 0 [rad]</th>
<th>Intensitetfördelning experimentellt (I_m/I_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-centralmaxima</td>
<td></td>
<td>Med hjälp av vinkeln</td>
<td></td>
</tr>
<tr>
<td>1-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 3. INTENSITETSFÖRDELNING DUBBELSPALT

<table>
<thead>
<tr>
<th>Ordning m</th>
<th>Intensitet teoretiskt $(I_m/4I_0)$</th>
<th>Vinkel från m = 0 till sidomaxima m ≠ 0 [rad]</th>
<th>Intensitet experimentellt $(I_m/4I_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-centralmaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-sidomaxima</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 4. BERÄKNING AV GITTERKONSTANT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5. BERÄKNING CIRKULÄRT HÅL SAMT HÅRSTRÅ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>