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Statistical mechanics

Maximum entropy principle
In the limit of large numbers, the outcome of a

random process will be the distribution that has

the largest entropy.

Example: Flip a coin with sidesA andB. How many

A:s andB:s will you most likely have after four flips?

Answer: The distribution (number ofA:s andB:s)

that has the most number of states (highest entropy)

will win (in the long run)!

In this case distribution 3 is most likely to

show up (prob = 6/(1+4+6+4+1) = 3/8).
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Network → Balls in boxes model

Map a network onto a set of balls and boxes.

Boxes⇐⇒ Nodes

Balls⇐⇒ Link ends

A link is defined by two link ends, e.g. (7,8)
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Variational Calculus
In how many ways can you distributeM balls intoN boxes?

Ω =
M !∏

k
N(k)! · (k!)N(k)

(Indistinguishable balls in a box)

⇒ lnΩ ≈ M ln M − M −
∑
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⇒ lnΩ ≈ M ln M − M −
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k

N(k)[lnN(k) − 1] −
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k

N(k) ln k!

To find the maximum oflnΩ, we put d

dN(k) lnΩ = 0 with the constraints∑
k
N(k) = N and

∑
k
N(k)k = M .

⇒ 0 = − lnN(k) + 1 − 1 − a − bk − ln k!

(wherea andb are Lagrange multipliers corresponding to the constraints)
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Variational Calculus
In how many ways can you distributeM balls intoN boxes?

Ω =
M !∏

k
N(k)! · (k!)N(k)

(Indistinguishable balls in a box)

⇒ lnΩ ≈ M ln M − M −
∑

k

N(k)[lnN(k) − 1] −
∑

k

N(k) ln k!

To find the maximum oflnΩ, we put d

dN(k) lnΩ = 0 with the constraints∑
k
N(k) = N and

∑
k
N(k)k = M .

⇒ 0 = − lnN(k) + 1 − 1 − a − bk − ln k!

(wherea andb are Lagrange multipliers corresponding to the constraints)

⇒ N(k) = Ae−bk/k! = A〈k〉k/k! ⇒ Poisson distribution (Erd̋os-Renyi)
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VC using a random process

Mapping changes in the states to changes in the degree distribution.

If you, by moving one ball from boxA to boxB, can reachP different states,

then this move should get a weight∝ P .

There arekA balls to choose from in box

A but only one place to put it in box B

⇒ P = pA · pB = kA.
The random process

1) Pick one box with probability

p ∝ k and one box with

p = 1/N .

2) Move one ball from the first

box to the second box.

⇒
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VC using a random process

Mapping changes in the states to changes in the degree distribution.

If you, by moving one ball from boxA to boxB, can reachP different states,

then this move should get a weight∝ P .
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Constrained Balls in Boxes

k-degeneracy (cyclic degeneracy)→ One ball in each box.

⇒ we havekA choices from boxA andkB choices from boxB.

If we also take into consideration that you can only choose a box by choosing

a ball, we get an extrak for each box.

⇒ N(k) = Ae−bk/k2

You are not allowed to empty a box!

⇒
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The Blind Watchmaker Network

Network constraints
Only one link between two nodes

No self loops

Implement the constraints in the algo-

rithm in the following way:

1) Pick two nodes with prob,p ∝ k2.

2) Move a random link from one to

the other. If the attempt is not

allowed by network constraint try

another random link from the same

node. Repeat until one is moved. If

none can be moved start from 1).

The Blind Watchmaker Network – p. 9/17



The Blind Watchmaker Network

Network constraints
Only one link between two nodes

No self loops

Implement the constraints in the algo-

rithm in the following way:

1) Pick two nodes with prob,p ∝ k2.

2) Move a random link from one to

the other. If the attempt is not

allowed by network constraint try
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Comparison with real data

Metabolic networks:

(a) Average over 107 organisms

(b) E. Coli
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Ma H and Zeng A-P, Bioinformatics 19: 270-277 (2003).
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Comparison with real data

Comparison:

(c) BW vs Metabolic: same N and M

(d) BW vs E.Coli: same N and M
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Comparison with real data

Comparison, with extra constraint:

(e) Same as in c) but with fixed n(1)

(f) Same as in d) but with fixed n(1)
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Conclusions - Part I

PLoS ONE 3(2): e1690,(2008).
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Conclusions - Part I

Agreement between the BW network and metabolic
networks looks very good⇒
Natural selection has had small effect on the
Metabolic networks degree distribution.

PLoS ONE 3(2): e1690,(2008).
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Conclusions - Part I

Agreement between the BW network and metabolic
networks looks very good⇒
Natural selection has had small effect on the
Metabolic networks degree distribution.

BW is a random network just as ER is a random
network.

PLoS ONE 3(2): e1690,(2008).

The Blind Watchmaker Network – p. 11/17



Network properties

The Blind Watchmaker Network – p. 12/17



Network properties

Clustering Coefficient
0 6 C 6 1

Assortativity
−1 6 r 6 1

The Blind Watchmaker Network – p. 12/17



Network properties

Clustering Coefficient
0 6 C 6 1

Assortativity
−1 6 r 6 1

〈C〉metab = 0.139 (0.143)

〈C〉BW = 0.103 (0.096)

The Blind Watchmaker Network – p. 12/17



Network properties

Clustering Coefficient
0 6 C 6 1

Assortativity
−1 6 r 6 1

〈C〉metab = 0.139 (0.143)

〈C〉BW = 0.103 (0.096)

〈r〉metab = –0.18 (–0.178)

〈r〉BW = –0.123 (–0.125)
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Clustering-Assortativity space
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Region of Low Assortativity

0.04

0.08

0.12

0.16

0.2

0.24

-0.24 -0.2 -0.16 -0.12 -0.08 -0.04

C
lu

st
er

in
g

co
ef

fi
ci

en
t,

C

Assortativity, r

BW : 30%,3%,0.3% of Hmax

Metab

−0.21 < r < −0.18 ⇒ Nmetab = 62
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Region of Low Assortativity

〈C〉metab = 0.148

〈C〉BW = 0.149

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

n
(k

)

k

Metab

BW

The Blind Watchmaker Network – p. 14/17



Conclusions - Part II

The Blind Watchmaker Network – p. 15/17



Conclusions - Part II

Metabolic networks are close to the null model
(BW).

The Blind Watchmaker Network – p. 15/17



Conclusions - Part II

Metabolic networks are close to the null model
(BW).

Deviations indicates evolutionary pressure towards
lower assortativity.

The Blind Watchmaker Network – p. 15/17



Conclusions - Part II

Metabolic networks are close to the null model
(BW).

Deviations indicates evolutionary pressure towards
lower assortativity.

This pressure, to large extent, is reflected in a small
change in the degree distribution.

The Blind Watchmaker Network – p. 15/17



Conclusions - Part II

Metabolic networks are close to the null model
(BW).

Deviations indicates evolutionary pressure towards
lower assortativity.

This pressure, to large extent, is reflected in a small
change in the degree distribution.

No evolutionary pressure on clustering.

The Blind Watchmaker Network – p. 15/17



Acknowledgment

I would like to thank...

The organizers for inviting me.

Petter Minnhagen for the collaboration on this work.

Luis Rocha and Seung Ki Baek for comments and suggestions.

The Blind Watchmaker Network – p. 16/17



0.04

0.08

0.12

0.16

0.2

0.24

-0.24 -0.2 -0.16 -0.12 -0.08 -0.04

C
lu

st
er

in
g

co
ef

fi
ci

en
t,

C

Assortativity, r

Metab

Metab rand

The Blind Watchmaker Network – p. 17/17


		itlecolor Outline
		itlecolor Statistical mechanics
		itlecolor Statistical mechanics
		itlecolor Statistical mechanics
		itlecolor Statistical mechanics
		itlecolor Statistical mechanics

		itlecolor Network $	o $ Balls in boxes model
		itlecolor Variational Calculus
		itlecolor Variational Calculus
		itlecolor Variational Calculus
		itlecolor Variational Calculus
		itlecolor Variational Calculus
		itlecolor Variational Calculus

		itlecolor VC using a random process
		itlecolor VC using a random process
		itlecolor VC using a random process
		itlecolor VC using a random process
		itlecolor VC using a random process

		itlecolor VC using a random process
		itlecolor Constrained Balls in Boxes
		itlecolor Constrained Balls in Boxes
		itlecolor Constrained Balls in Boxes
		itlecolor Constrained Balls in Boxes
		itlecolor Constrained Balls in Boxes

		itlecolor The Blind Watchmaker Network
		itlecolor The Blind Watchmaker Network
		itlecolor The Blind Watchmaker Network
		itlecolor The Blind Watchmaker Network
		itlecolor The Blind Watchmaker Network

		itlecolor Comparison with real data
		itlecolor Comparison with real data
		itlecolor Comparison with real data
		itlecolor Comparison with real data

		itlecolor Conclusions - Part I
		itlecolor Conclusions - Part I
		itlecolor Conclusions - Part I

		itlecolor Network properties
		itlecolor Network properties
		itlecolor Network properties
		itlecolor Network properties

		itlecolor Clustering-Assortativity space
		itlecolor Clustering-Assortativity space

		itlecolor Region of Low Assortativity
		itlecolor Region of Low Assortativity

		itlecolor Conclusions - Part II
		itlecolor Conclusions - Part II
		itlecolor Conclusions - Part II
		itlecolor Conclusions - Part II
		itlecolor Conclusions - Part II

		itlecolor Acknowledgment

