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Abstract

C
omplex systems are neither perfectly regular nor completely random. They
consist of a multitude of players who, in many cases, play together in a way
that makes their combined strength greater than the sum of their individual

achievements. It is often very effective to represent these systems as networks where
the actual connections between the players take on a crucial role. Networks exist
all around us and are an important part of our world, from the protein machinery
inside our cells to social interactions and man-made communication systems. Many
of these systems have developed over a long period of time and are constantly un-
dergoing changes driven by complicated microscopic events. These events are often
too complicated for us to accurately resolve, making the world seem random and
unpredictable. There are however ways of using this unpredictability in our favor
by replacing the true events by much simpler stochastic rules giving effectively the
same outcome. This allows us to capture the macroscopic behavior of the system,
to extract important information about the dynamics of the system and learn about
the reason for what we observe. Statistical mechanics gives the tools to deal with
such large systems driven by underlying random processes under various external
constraints, much like how intracellular networks are driven by random mutations
under the constraint of natural selection. This similarity makes it interesting to
combine the two and to apply some of the tools provided by statistical mechanics on
biological systems. In this thesis, several null models are presented, with this view
point in mind, to capture and explain different types of structural properties of real
biological networks.

The most recent major transition in evolution is the development of language,
both spoken and written. This thesis also brings up the subject of quantitative
linguistics from the eyes of a physicist, here called linguaphysics. Also in this case
the data is analyzed with an assumption of an underlying randomness. It is shown
that some statistical properties of books, previously thought to be universal, turn
out to exhibit author specific size dependencies. A meta book theory is put forward
which explains this dependency by describing the writing of a text as pulling a
section out of a huge, individual, abstract mother book.
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Sammanfattning

K
omplexa system är varken perfekt ordnade eller helt slumpmässiga. De
best̊ar av en mängd aktörer, som i m̊anga fall agerar tillsammans p̊a ett
s̊adant sätt att deras kombinerade styrka är större än deras individuella

prestationer. Det är ofta effektivt att representera dessa system som nätverk där de
faktiska kopplingarna mellan aktörerna spelar en avgörande roll. Nätverk finns över-
allt omkring oss och är en viktig del av v̊ar värld , fr̊an proteinmaskineriet inne i v̊ara
celler till sociala samspel och människotillverkade kommunikationssystem. M̊anga
av dessa system har utvecklats under l̊ang tid och genomg̊ar hela tiden förändringar
som drivs p̊a av komplicerade sm̊askaliga händelser. Dessa händelser är ofta för
komplicerade för oss att noggrant kunna analysera, vilket f̊ar v̊ar värld att verka
slumpmässig och oförutsägbar. Det finns dock sätt att använda denna oförutsäg-
barhet till v̊ar fördel genom att byta ut de verkliga händelserna mot mycket enklare
regler baserade p̊a sannolikheter, som ger effektivt sett samma utfall. Detta till̊ater
oss att f̊anga systemets övergripande uppförande, att utvinna viktig information
om systemets dynamik och att f̊a kunskap om anledningen till vad vi observerar.
Statistisk mekanik hanterar stora system p̊adrivna av s̊adana underliggande slump-
mässiga processer under olika restriktioner, p̊a liknande sätt som nätverk inne i
celler drivs av slumpmässiga mutationer under restriktionerna fr̊an naturligt urval.
Denna likhet gör det intressant att kombinera de tv̊a och att applicera de verktyg
som ges av statistisk mekanik p̊a biologiska system. I denna avhandling presenteras
flera nollmodeller som, baserat p̊a detta synsätt, f̊angar och förklarar olika typer av
strukturella egenskaper hos verkliga biologiska nätverk.

Den senaste stora evolutionära överg̊angen är utvecklandet av spr̊ak, b̊ade talat
och skrivet. Denna avhandling tar ocks̊a upp ämnet om kvantitativ linguistik genom
en fysikers ögon, här kallat linguafysik. Även i detta fall s̊a analyseras data med
ett antagande om en underliggande slumpmässighet. Det demonstreras att vissa
statistiska egenskaper av böcker, som man tidigare trott vara universella, egentligen
beror p̊a bokens längd och p̊a författaren. En metabokteori ställs fram vilken förk-
larar detta beroende genom att beskriva författandet av en text som att rycka ut en
sektion ur en stor, individuell, abstrakt moderbok.
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Preface

O
ur world can at times seem random, or unpredictable, without any real
underlying purpose. Chains of seemingly unrelated events often lead to
unexpected, circumstantial incidents, and we call it chance. After 20 years

of making a random walk in life I started my random walk in physics. Later I also
came into contact with problems and questions from outside the borders of physics,
and I have to say that our world is really an amazing place. It does not matter if we
are talking about the birth of a star, black holes, how life came to be, how languages
have developed or how the stock market works. There are interesting questions
everywhere. Our society has, however, divided science into fields, or disciplines, in
order to make it easier for us to handle. But as a consequence we have created a void
in between these disciplines, or fuzzy borders where they overlap, and few people
have felt the urge to go there in the past. This is however about to change. There
has been an increasing activity in interdisciplinary sciences during the recent years
and scientists from different fields are coming together and collaborate in growing
numbers. Attacking problems from different angles and with different view points is
very healthy for the progress of science. The challenge is to find a common ground
and learn to decode each other’s vocabulary.

I think it is safe to say that this thesis is quite interdisciplinary. It is built
on different research projects with questions and data imported from various fields
other than physics. The common theme here is symbolized by the dices on the
cover. These dices represent the underlying randomness of a system which we try
to explore and exploit in order to give possible explanations to observed non-trivial
properties.

The dices also signify what type of random events we are talking about. The
outcome of a dice is random because the process is chaotic. The outcome of a
throw depends on the initial velocity and rotation which, depending on the starting
height, determine how it will collide with the table. The consecutive bounces, in
there turn, depend on how the dice hits the table, and on the properties of the
surface it bounces on before it comes to a rest. The point is that all these steps can
be exactly calculated and repeated if we knew, and could re-create, all the above
mentioned conditions of the throw precisely. However, if the initial condition of the
throw is changed just a tiny bit, the outcome will change dramatically. So, if we do
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not know everything about the throw with very good precision, we can just as well
guess the outcome. Which is what we do. We simplify the process by saying that it
is random and assign probabilities to the different outcomes. The same is true in a
classical view of a system of particles in a box exchanging energy and momentum via
collisions, or the mutation of a specific base pair in the DNA due to radiation. The
point is that randomness in this sense reflects nothing more than a lack of adequate
knowledge.

In order to make up for this lack of knowledge we zoom out and exchange the
microscopic events with much simpler stochastic rules so that they represent the
effective outcome of the system. This allows us to make predictions and draw con-
clusions about the macroscopic properties of the system. For example, by assigning
equal probability to each side of a dice we can make predictions about how often
certain numbers will come up. We can, in the same way, conclude to what extent
a dice is biased, or affected by constraints, by the way the outcome deviates from
the expected result. With this approach in mind statistical mechanics provides the
means and tools to deal with large chaotic systems under the influence of exter-
nal constraints, or forces like gravity or magnetism. In a similar way Darwinian
evolution can be described as a random process, driven by mutations, under the
constraints of natural selection. The mutations constitute the engine and natural
selection is controlling the steering wheel.

By using the tools from statistical mechanics on biological systems we zoom out
and try to find the simplest representation of the underlying process in an attempt
to describe the dynamics of the system and with the hope to learn about how the
constraints of natural selection has affected its structure.

This thesis is divided into three parts where the first chapter is an introduction
to network science including a guided tour through the terminology and some of the
main issues, concepts and models that have awoken peoples’ interest in the field.

My goal of the second chapter is to give an overview of statistical mechanics and
hopefully giving an understandable description of how randomness comes up, and
is dealt with, in physics. And ultimately how it can be applied to networks.

Finally the third chapter is about word frequencies and quantitative linguistics
which I here call linguaphysics (in conformity with the term ’econophysics’). We
move to this field because the statistical approach and modeling of these systems
are very similar to those used in network science. Also, this system is free from the
complexity related to patterns of connections and there is a huge amount of data
available, making it a natural step to take when studying randomness in complex
systems.

As a final remark, before I leave you to unravel the mysteries of the randomness
in your world, I quote the words of Eric Hoffer: “Creativity is the ability to introduce
order into the randomness of nature”.
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Chapter 1

Complex Networks

H
ave you ever been amazed by the speed at which some news reaches the peo-
ple around you? Or by the fact that when you meet a complete stranger you
often seem to have a mutual acquaintance? The explanations to many such

everyday phenomenas can be found in the field of complex networks, which studies
interconnected systems where the patterns of interactions between the constituents
play an important role. These networks affect our lives daily, like the Internet, the
world wide Web and the protein networks in our cells.

The field of complex networks originates from graph theory which was born as
early as in the 18th century from studying problems like how to visit all the cities
in a country without crossing ones own path [16]. The field took a big leap when
fast computers with a high computational capacity became available since it gave
scientists the opportunity to perform fast simulations on large systems. During
the recent years the field has been dominated by measuring real world networks,
trying to find connections between the structure and the function of a network and
to understand the process of evolving networks. It was found that many networks
from completely different parts of our world, like those mentioned above, have some
common features. Many real world networks, for example, display a small world
effect meaning that all entities of the network are separated by only a small number
of steps. Another common property is that most entities of a network have only a
low number of connections while a few entities are very well connected [11]. This
is usually referred to as a broad distribution of connections, also called scale-free
[10]. The questions that arose as a consequence of these findings were regarding
the universality of such properties and the functional abilities that come with them
[4, 20]. What kind of processes are behind the assembly of these networks, creating
the observed structures?

There are a number of books available on this topic both with a popular scientific
approach (e.g. Six Degrees: The Science of a Connected Age by D.J. Watts)[86, 9]
and those giving a more technical description of network science [19, 27].



2 Complex Networks

1.1 Definition of nodes, links and complex networks

Most people have a fairly good idea of what is meant by the word “network”. How-
ever, to rid us from the risk of misunderstandings we need a clear definition. A
network, or graph, is a web of connections, or links, which represents some sort
of information flow between the constituents that make up the network. These
constituents, usually referred to as nodes or vertices, can take the form of people,
animals, computers, web pages, proteins, metabolites etc. Furthermore, the infor-
mation flow can represent gossip, the flow of nutrients up the food chain, electrical
impulses, switching a gene on or off, and much more.

The condition on the links to represent some sort of “information flow” is used to
highlight the fact that even though we could, with enough imagination, construct an
almost endless number of networks, many of them would not pass as “real” networks
in this sense. If two stocks seems to go up and down together in a correlated fashion,
we could be tempted to put a link between them and make a network of companies.
But the fact that they are correlated do not have to mean, and it usually doesn’t,
that the increase in the stock prize of one company is the direct cause of the increase
in the stock prize of the other. The conventional use of the term “network” requires
a direct cause and effect relationship.

So, what do we mean by a complex network? The word“complex”is another term
with as many meanings as there are scientists. This term is sometimes separated
from the word “complicated” by the notion of solubility. A complicated problem is
difficult but straight forward to solve, while a complex system includes some higher
order structure which is unreachable to us. The phrase “the whole is more than the
sum of its parts” says it pretty well. The performance of a complex network is not
only dependent on the nodes but also on the interactions. Or, as an example, the
success of a soccer team is not determined only by the names of the players but
also on how they play together. Another definition of a complex system is a system
which is neither perfectly regular nor completely random. That is, a complex system
has nontrivial structures which are indeed difficult to deal with analytically.

The number of nodes in a network will here be denoted as N , and the total
number of connections as M . Since a link has two connections (ends), the number
of links is M/2. The degree, or connectivity, refers to the number of links attached
to a certain node, and will be denoted as k. Thus, the average degree in a network is
〈k〉 = M/N . The links can also be directed or undirected, depending on the actual
meaning of the link, and if information can flow both ways. The Internet, and most
friendship networks are undirected while, for example, the World Wide Web and
food webs are directed. A reindeer will not suddenly eat a wolf. Directed links are
usually illustrated by arrows with an outgoing- and an ingoing end. This means that
a node has both an out- and an in-degree (for a directed network the total number
of in-connections, out-connections and links are the same).
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Male

Female

Figure 1.1: Dating network for celebrities in USA [35]. The two well connected persons
in the middle are Gwyneth Paltrow and Leonardo DiCaprio

1.2 Real networks

The field of complex networks strongly rely on the existence of good data. That is,
real-world networks mapped down to a set of nodes and links. Luckily, our world is
full of them.

1.2.1 Social networks

Social scientists have been collecting data of human social interactions for a long time
and there are many data sets available on this topic [76]. Examples of such networks
are friendship networks of school children [32] dating networks (e.g. from on-line
dating services or for celebrities as shown in Fig. 1.1 [35]), co-authorships [62, 12],
business relationships [37], sexual contacts [53] and many more. Social networks
are usually highly clustered (see section 1.3.4) meaning that they are locally tightly
connected.

1.2.2 Infrastructural networks

Infrastructural networks are man made constructions with the purpose to ease our
daily life and enhance the communication in our society. These kinds of networks
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often have geometrical constraints imposed on them since we are confined to live on
a 2D surface. Examples of such networks are the Internet, car roads, flight roots
between airports, and the World Wide Web (which does not have any geometrical
constraints).

Internet

The Internet is a huge, fast growing, network of computers communicating with each
other by sending digital packages of information. Usually a zoomed-out version, to
the autonomous-system level, is used to decrease the number of nodes of the system
[31]. An autonomous system is simply put a collection of connected computers
with a common IP prefix. These computers communicate with others through the
Internet using a common routing policy. The Internet has a hierarchical structure
[85] where the biggest hubs are connected to each other and to medium sized nodes.
These, in turn, are connected to smaller nodes, and so on.

Roads

The roads we use when driving to work, visiting our friends and family, or when going
shopping, make up a very important infrastructural network for the functioning of
a society. Goods and people are being transported, and we all want to reach our
destination as fast and easy as possible. There are two common ways of representing
a system of roads as a network. The first one is to use the intersections as nodes
and the streets as links [22]. This makes sense in the way that cars are flowing
on the links between intersections. However, for many purposes a node should be
the start-, and the end point when traveling through a network. When driving to
visit a friend, your home address (a road) is the starting point, and your friends
address (another road) is the endpoint. So, in this sense it might be better to make
a representation where the roads are nodes and the links represent the crossing of
two roads, symbolizing the fact that it is possible to make a turn on one road to end
up on the neighboring road [75].

Airports

Every day, thousands of airplanes fly between airports all over the world, making up a
network of flight routes [23]. The common practice is to use only links representing
regular flights with some lower bound frequency of departure. The links can be
weighted according to flight frequency, number of passengers or amount of cargo
being transported, depending on the interest of the study [24]. Airports are also
highly hierarchical (as described for the Internet).
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World Wide Web

The World Wide Web (WWW) is a network of hyperlinks, connecting web pages
[3, 1]. This network is by definition directed since web page administrators can
only create links from their own web page to other pages, and not the other way
around. But, the other pages can, of course, link back, creating a double link,
which together works in practice like an undirected link. The WWW is a virtual
network and thus has no geometrical constraints. It is also a huge network which
has been growing extremely fast during the last 15 years. An interesting feature
is a peculiar bow tie like structure [29]. It turns out that about a forth of all
the web pages are a part of a strongly connected giant component (SCGC), where
all pages can reach each other. Another forth is a part of a giant connected “in-
component”, where everyone can reach pages down stream of themselves leading
to the SCGC. A similar giant connected “out-component”, leading away from the
SCGC, also constitute approximately a forth of the pages. The final forth consists of
tendrils leading out from the in-component and in to the out-component plus pages
isolated from the main bulk.

1.2.3 Intracellular networks

Important and interesting networks can be found also in living cells. For example,
the proteins that preform all the daily tasks needed to keep us alive are working
together in elaborate webs of interactions. There exist several types of protein net-
works, dealing with different types of interactions. Two examples are protein-protein
networks and regulatory networks. The metabolism is another type of network where
food is transformed into more usable molecules.

Protein-protein networks

Protein-protein interactions are physical interactions which are extremely important
and used in almost all cellular processes. In protein-protein networks the interactions
represent the ability for a pair of proteins to bind and form a complex. Since virtually
all proteins can bind under the right conditions a threshold on the probability of
binding is needed to weed out “unimportant links” and to avoid a fully connected
network. Such a threshold brings in a subjective element in the analysis of the
system [45].

Regulatory networks

The DNA is the blueprint of life. And not only does it encode for all the proteins
needed for sustaining life, it also encodes for the mechanism of controlling when
they are needed. The DNA is regulating itself by giving some proteins control over
the production of other proteins. Thus, a protein can turn another protein on or
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off by blocking (repressing) or activating (promoting) the read off (transcription)
of the gene in question. These proteins and their regulatory interactions create a
regulatory network where the links are directed and with the properties of turning
its neighbors on or off [30, 42, 60].

Metabolic networks

Food need to be digested in order to extract the key molecules used as energy
sources in molecular processes. Once the raw food has been taken in by a cell, it is
transformed in chains of reactions, catalyzed by enzymes, until the desired products
are produced. Each reaction has substrates as input and products as output and
the metabolic network can be represented in three different ways: As a reaction
network where different reactions are connected if the output of one reaction is the
input of another. As a substance network where the substances are linked together
if one substance is needed in the making of another. And, finally, as a bipartite
network where there are two kinds of nodes, reactions and substances, connected in
an alternating fashion. A substrate is linked to a reaction for which it is an input,
and the reaction is, in its turn, linked to the substances it produces [56, 55, 48].

1.3 Network structures and properties

The structure, or topology, of a network is about what kinds of patterns of con-
nections exist in the network. In order to investigate what organizational principles
and evolutionary rules there are governing the structure of real world networks, the
structure needs to be quantified and measured. This is also necessary when trying
to classify different types of networks. The structure of a network is presumably also
important for its function. It affects a networks resilience against random failures
[4] and breakdowns [43], as well as the speed at which signals (e.g. deceases) can
spread through a network [66].

Many measures have been developed over the years to capture various properties
of networks. They range from large scale properties like modularity (subgraphs with
more internal links than links to the outside) [70] to motifs of different shapes and
sizes [78] and down to point properties of nodes. This section is devoted to some of
the simpler, and much studied, properties of networks.

1.3.1 Degree distribution

The degree is in many cases a property which reflects the importance, or the role,
of a node in a network [4]. An important feature of the whole network is then the
distribution of degrees. That is, the number of nodes, N(k), or the fraction of nodes,
P (k) = N(k)/N , with a certain degree k. The system size is related to the degree
distribution in the following way
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Figure 1.2: Discrete probability distributions in log-log scale: (a) Poisson, (b) exponential
and (c) power law.
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P (k) = 1 (1.1)
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kP (k) = 〈k〉 (1.2)

Poisson

An important bench mark in network science has been the “random” Poisson distri-
bution. It has been widely used as a null model representing a random network (see
section 1.4.2). The Poisson distribution is described by the expression

P (k) ∝
〈k〉k

k!
, (1.3)

which is peaked at the average value and has a very fast decaying tail on both
sides (Fig. 1.2a). The distribution coincides with the Gaussian distribution at high
values of 〈k〉.

Exponential

Another common distribution in nature is the exponential distribution (Fig. 1.2b).
This distribution, given by Eq. 1.4, is monotonically decreasing, but a characteristic
scale, proportional to the average value, determines the rate of decrease.

P (k) ∝ exp(−k/k0) (1.4)

where k0 ∝ 〈k〉.
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Power law

The field of complex networks exploded in the late nineties when it was discovered
that many real networks exhibit the peculiar property of having a degree distribution
described by a power law. A power-law distribution is broad (or heavy tailed) in the
sense that, even though most nodes will have small degrees, there exist a few nodes
with a huge amount of connections (Fig. 1.2c). The power-law distribution is given
by

P (k) ∝ k−γ, (1.5)

where the exponent γ is a positive number, usually between 1 and 3 for real
systems [11]. This distribution is often referred to as “scale free” since it is scale
invariant according to the relation P (ak) = A(a)P (k).

Presentation

A convenient way of plotting the degree distribution is to use logarithmic scale. This
gives a more detailed view of the behavior for large k and a quick hint to what extent
the distribution follows a power law since there is a linear relation between log P (k)
and log k.

There are also two conventional ways of increasing the range, and reducing the
fluctuations, of a distribution generated by a stochastic process. One is to plot the
cumulative distribution given by

F (k) =
∞

∑

k′=k

P (k′), (1.6)

which is the fraction of nodes that have a degree larger than, or equal to, k. For
a power-law distribution the exponent is simply decreased by one since the primitive
function of k−γ is k−(γ−1).

Another way is to bin the data with an increasing bin size. That is, take the
average value of the points in each bin and display them at the center of the bin.
The size of bin i could, for example, follow the expression Si = 2i−1 (the first bin
contains k = 1, the second k = 2 and 3, the third k = 4, 5, 6 and 7, and so on),
which makes the bins equally separated in log scale. This method works well for
monotonically decreasing functions, like the exponential or the power law, where
there is a falloff in statistics with increasing k.
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1.3.2 Shortest path

A measure of distance in a network is the number of steps needed to go from one node
to another1. Since there might exist a very large number of possible paths connecting
two nodes, the shortest-path length is usually used. This can be motivated by a
simple flow analogy: If information flows down all links with equal speed, and all
links have the same length, then a receiving node will first get the information
through the shortest path.

The size of a network is naturally determined by the number of nodes and links,
but, a simple network representation does not have a spatial extension. In order
to get a feeling for the “volume” of a network, a common practice is to measure
a diameter. Several definitions have been proposed, but the most popular one is
probably the average shortest-path length [3] as described by

D = 〈d〉 =
1

N(N − 1)

N
∑

i

N
∑

j>i

dij , (1.7)

where N is the number of nodes and dij is the shortest path between node i and j.

Another definition is to use the longest shortest path between any two nodes
[69].

1.3.3 Centrality

There are situations when it might be crucial for the problem at hand, or simply
just fun, to find the most important nodes in a network. It could be persons that
have a high risk of being infected by a disease or computers that are vital for the
transmission of digital messages. There exists several measures designed to capture
these nodes, all with the common goal of quantifying some sort of central role in the
network. Two commonly used definitions are betweeness centrality and closeness
centrality [36].

Betweeness centrality

One way of defining an important node is through the number of shortest paths that
it is a part of. If one passes a certain node very often when moving between random
pairs, then this node can be considered as a very central node. It also means that
if this node is removed then many shortest paths are made longer, or it might even
break up the network into disconnected pieces.

1If the links are weighted according to a distance related quantity then the distance might be
measured as the sums of the weights along a certain path
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Closeness centrality

To be a good broadcaster in a network a node should be as close to all other nodes as
possible for the messages to quickly reach its destinations. This leads to a centrality
measure where the most important node is the one with the smallest average shortest
path to all other nodes. Nodes with high closeness centrality (small average shortest
path) often have a high degree since each link constitutes a short cut in the network.

1.3.4 Clustering coefficient

The clustering coefficient (CC) is a measure of the number of triangles existing in a
network, normalized by the possible number of triangles that could exist. A triangle
in a social network means that if A and B are friends, and A and C are friends,
then B and C are also friends. A subgraph with a high density of triangles implies
a tightly connected module.

A local clustering coefficient, introduced by Watts and Strogatz (1998) [87],
counts the number of triangles involving a certain node, divided by the total number
of possible triangles that could be formed in the neighborhood of that node. The
local CC for node i is then

Ci =
2N△

ki(ki − 1)
, (1.8)

where N△ is the number of triangles (three nodes where everyone is connected to
everyone) and ki is the degree of node i. A total average CC can then be calculated
as

C =
1

Nk>1

∑

i,ki>1

Ci, (1.9)

were Nk>1 is the number of nodes with a degree larger than one.
Another definition was introduced by Barrat and Weigt (2000) [13] as a global

clustering coefficient defined as

C = 3
N△

N∧
, (1.10)

where N△ is the total number of triangles and N∧ is the total number of triplets
(three nodes where at least one node is connected to the two other nodes) in the
network.

The two definitions are the same when calculating the CC of a single node.

1.3.5 Degree correlations

Degree correlations is a “one step” local measure in the sense that it addresses the
question who is connected to whom, with identities represented by degrees. That is,
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Figure 1.3: Randomization scheme keeping the degree of each node fixed.

do low degree nodes tend to connect to high degree nodes or do they prefer other
nodes with low degree?

The degree-correlation profile was introduced by Maslov and Sneppen (2002)
[59, 61] with the aim to measure the quantity P (ki, kj), which is the probability for
a node of degree ki to be connected to a node of degree kj . The correlation matrix,
R(ki, kj), is then calculated by taking the ratio of the number of links connecting
nodes of certain degrees in the observed network and the average result for a random
null model.

R(ki, kj) =
Pobs(ki, kj)

Prand(ki, kj)
. (1.11)

The null model is furthermore designed to keep the degree of every node fixed
since degree correlations depend strongly on the degree distribution. The random-
ization is done by picking two random links and exchanging the connections of two of
the nodes, as illustrated in Fig. 1.3. To assure good statistics even for large k-values
(for which there exist only a few nodes) the range is binned with an increasing bin
size for increasing k (e.g. bin 1 contains k = 1, 2, 3, bin two k = 4...10, bin three
k = 11...30 etc.).

Newman (2002) [67] suggested another measure, called the assortativity, based
on the Pearson correlation coefficient which ranges between the values -1 and 1. The
Pearson correlation coefficient measures the linear dependence between two random
variables and can be written as

r =
〈jk〉 − 〈j〉〈k〉

σjσk
, (1.12)

where 〈...〉 stands for an ensemble average, j and k are the outcome of the two
random variables and σ is the standard deviation. For the assortativity in a network
〈...〉 means an average over all links, and j and k are the degrees of the nodes on
either side of a link. The variables j and k cannot be separated in an undirected
network (there is no “left” or “right” on a link). To get around this problem the
term 〈j〉〈k〉 is replaced by 〈k̄〉2 where k̄ = 1

2
(j + k) is the average degree of the two

connected nodes. The resulting formula then becomes
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r =
4〈jk〉 − 〈j + k〉2

2〈j2 + k2〉 − 〈j + k〉2
. (1.13)

The value still ranges between -1 and 1, where -1 means perfect disassortative
mixing (connected nodes have very different degrees) and 1 means perfect assortative
mixing (connected nodes have the same degree). The assortativity measure can also
be designed to capture different types of node correlations other than the degree,
depending on what kinds of node characteristics exist in the data (e.g. language,
race, age etc) [68].

1.4 Network models

Models are used to give hints to the origin of some observed property and to teach
us something about how the system works. If a model accurately contains every
possible action that takes place in the system we have not really gained any new
knowledge. So, a good model should therefore be able to reproduce the desired
property by only a few simple rules, suggesting that these rules are possibly the
most important reasons for the appearance of a particular property. In an attempt
to reproduce structures of real networks many authors have developed models of the
evolution, or assembly, of networks.

1.4.1 Small world

In 1967, Milgram preformed a famous experiment where he sent out letters to ran-
domly selected persons in USA, asking them to forward the letter to a predetermined
target person [47]. The only catch was that the letter was only allowed to be sent
to a friend on a first name basis. The task was thus to choose a friend believed
to be closer (geometrically, professionally etc.) to the target person. This friend in
his/her turn had to forward the letter again, and so on, until the final destination
was reached. When collecting the letters that made it all the way (about 25%),
Milgram found that the average number of steps taken to reach the target person
was six. And thus the expression “six degrees of separation”. This is also called a
small-world phenomenon which implies that people on our planet are much closer
connected than we might imagine at first.

In 1998, Watts and Strogatz [87] developed a network model (WS) describing
the situation of having short distances between nodes and high clustering at the
same time, which they appropriately gave the name ’small-world’ networks. The
model contains a continuous transition from a perfectly regular network (Fig. 1.4a),
a lattice, to a completely irregular network (Fig. 1.4c), a random graph. The lattice
has high clustering but a very large diameter, while a random network has a very
low clustering but a small diameter. The region between these two extremes was
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(a) p = 0 (b) p = 0, 05 (c) p = 1

Figure 1.4: The WS model where the parameter p gives the probability for a link to be
randomly rewired: (a) A perfectly regular network p = 0. (b) For a small p short cuts are
created shrinking the diameter of the network. (c) A perfectly irregular network is created
when p = 1 with a small diameter and low clustering.

explored by introducing a probability, p, for a link to be randomly rewired, and
thus to create a short cut in the system. Consequently, p = 0 corresponds to the
lattice and p = 1 to the random network as shown in Fig. 1.4. It turned out that
it takes just a few rewirings (p ∼ 0.01, around 1% of the links are rewired) to get
a small diameter that scales as D ∝ ln N , instead of the linear dependence on N
which is the case for the lattice. On the other hand, the clustering coefficient do not
reach the small values similar to those of random networks before a large fraction
(p > 0.5) of the links has been rewired. Thus, there exists a ’small-world’ region
for small p > 0. These results have many practical implications where one is the
spreading of diseases on social networks. It can be shown that the spreading of
diseases on a network is much faster if it exhibits small-world properties since the
short cuts connects otherwise distant parts of the network. But it is, at the same
time, difficult for individuals to be aware of these short cuts since the local structure
(e.g. clustering) is very weakly affected by a few random rewirings.

1.4.2 ER model

An a priori assumption, or approximation, when considering a real network could be
that it is random in the sense that there is no preference for anyone to be connected
to anyone else in particular. Erdős and Rényi developed a random graph model in
1959, usually referred to as the ER-network [72], in which every pair of nodes have
the same probability, p, to be connected. The algorithm is very simple:

Start with N disconnected nodes.

(i) Pick a pair of nodes that have not been picked before.
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(ii) Put a link between them with probability p.

These steps are then repeated until all pairs have been picked. The ER-model
is suitable for analytic calculations due to the lack of structure in the network, like
degree correlations (all nodes, regardless of their degree, have the same probability
to be connected to any other node).

The expectancy value of the average degree is

〈k〉 = (N − 1)p ≈ Np, (1.14)

and the degree distribution can be found by realizing that the probability for a
certain node to have degree k follows the binomial distribution

P (k) = pk(1− p)N−1−k

(

N − 1

k

)

. (1.15)

That is, the probability to get k links, times the probability to not get N −1−k
links, times all the combinations in which this happens.

The binomial distribution coincides with the Poisson distribution in the large N
limit, which leads to a degree distribution given by

P (k) =
e−〈k〉〈k〉k

k!
. (1.16)

Even the clustering coefficient, as defined by Eq. 1.10, is easy to calculate ana-
lytically since given an open triplet, the probability for the remaining two nodes to
be connected is p. This means that the clustering coefficient can be calculated by

CER =
pN∧

N∧
= p. (1.17)

The parameter p regulates the number of links in the network and thus to what
extent the network is connected. When increasing p the network gets more dense and
the chance of having a path between every node in the network increases. There
exists a percolation threshold, for large N , at M = N (p ≈ 1/N). When the
number of links is smaller than this threshold the network consists of small, isolated,
components with sizes of order O(log N). When the system is above the threshold
the network becomes almost completely connected and a single giant component is
formed with a size of order O(N) [69]. The ER-network also exhibits small-world
properties in the sense that all nodes can be reached through a small number of steps.
It has been found that above the percolation threshold, the average shortest-path
follow the expression [17]

〈d〉ER ∼ ln N/ ln〈k〉. (1.18)
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1.4.3 BA model

The first model to reproduce the power-law behavior of real networks was presented
by Barabási and Albert (1999) [10] and has been the inspiration of much work in
the field since then. The model is a special case of the Simon model (see section
3.4.1), as pointed out by Bornholdt et al. (2001) [18], and is based on growth and
preferential attachment of links. The latter element is motivated by the rich-get-
richer phenomenon [25] which addresses the notion that it is much easier to make
money if you have a lot of money already. Or, it is easier to make new friends if
you have many friends to start with, and are well known in the community. The
algorithm of the Barabási and Albert (BA) model is:

Start with a small set of nodes and links.

(i) Add a new node with m links.

(ii) Attach each of the new links to an existing node, i, with a probability propor-
tional to the degree of that node, pi ∝ ki.

These steps are then repeated until the network consists of the desired number
of nodes, N .

The networks produced by this algorithm will have, in the large N limit, an
average degree of

〈k〉 ≈ 2m, (1.19)

and the degree distribution will follow a power law with the exponent γ = 3,
independent of the parameter m. Worth noting is that the power-law behavior can-
not be obtained by simple preferential attachment, without growth, or by using only
growth with uniform attachment. They are needed together. Also, the preferential
element has to be linear.

Since it was first introduced by Barabási and Albert, many proposed extensions
and modifications of the model have seen the light of day. Most of them are con-
cerning the preferential element of the model but there are also versions including
rewiring of links and removing of nodes [2].

1.4.4 Merging model

The merging-and-regeneration model was first introduced in the field of networks by
Kim et al. (2005) [50], and has been used to model, for example, the size distribution
of solar flares (sun spots) [64, 82]2. The merging element has also been used in non-
network models to reproduce the size distribution of ice crystals and the length
distribution of α-helices in proteins [33]. The model was constructed for undirected

2The articles [64] and [82] has a publication date of 2004 but they are both citing the preprint
of Kim et al.
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networks and based on the notion that systems should continuously try to optimize
their function. Since the main function of many systems is to transfer information,
the idea was to develop a dynamical process where the signaling capability was
increased. The two lines of action used was shortening of signaling paths, and growth
of signaling hubs. As progress goes on, several smaller routers in the Internet can
be exchanged by a larger, and faster, router, making it possible to send information
in a more efficient way. At the same time, new computers, or routers, are added as
the network extends, and more people get connected to the Internet. This results
in the following algorithm:

Start with N nodes and M links, connected in an arbitrary way.

(i) Pick a node, i, and one of its neighbors, j, at random.

(ii) Merge the two nodes by letting node i absorb node j and all of its links,
except those they previously shared. The resulting node will thus get the
degree ki + kj −u, where u is the number of links that were discarded in order
to avoid double links and self loops.

(iii) To keep the number of nodes fixed, add a new node with degree r and connect
it to r random nodes.

When repeated many times, a steady state situation is reached when u = r. That
is, the number of lost links in the merging step equals the number of added links
in the regeneration step, on average. The model creates scale-free networks with a
power-law exponent between -3 and -2 with increasing r. A slight modification of
the model where both nodes to merge are picked randomly generates an exponent
around 1.5.

1.5 Summary of papers

1.5.1 Paper I

In the first paper entitled Models and average properties of scale-free directed net-
works we extend the merging model, described in section 1.4.4, to directed net-
works and investigate the emerging scale-free networks. Two versions of the model,
friendly- and hostile merging, are described and it is shown that they represent two
distinctly different types of directed networks, generated by local update rules. Also,
two minimalistic model networks, model A and B, are introduced as prototypes of
these two kinds of networks. Furthermore, it is shown that the distinctive features
of the two network types show up also in real networks from the realm of biology,
namely metabolic- and transcriptional networks.

The measures used to classify these directed networks is the in- and out-degree
distribution, the average in-degree of a node as a function of its out-degree, the
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(a) (b)

Figure 1.5: Landscape analogue: (a) Landscape analogue where high degree nodes have a
high altitude. The color coding represent a node property proportional to the degree of the
node (red high, white low). (b) Network with separated hubs and ridged landscape generated
by the algorithm described in the text. The color coding of the network represent a node
property other than the degree (here a random number), and for the landscape (contour
map) it represents the degree (white high, black low).

spread of the in-degrees of nodes with a certain out-degree, and finally the portion
of nodes with only in-, only out- or with both in- and out-links.

It turns out that metabolic networks belong to type A of directed networks
(model A and friendly merging) where the in- and out-degree distributions are iden-
tical, and there is a linear dependence between the average in-degree and the out-
degree of a node, 〈kin〉kout

≈ kout. This is a non-trivial property which can be
analytically shown to hold for degree distributions following a power law but not
for e.g. Poisson. Furthermore, the spread follows a power law with a slope close to
−1/2 and there are about the same portion of nodes with only in-links as there are
nodes with only out-links.

The regulatory network of yeast, on the other hand, belong to type B (model B
and hostile merging) with a broad out- and a narrow in-degree distribution. The
in-degree of a node, as well as the spread of in-degrees, are in this case independent
of the out-degree. Also, the fraction of nodes with only in-links is far greater than
those with only out-links.

1.5.2 Paper II

In the paper Degree landscapes in scale-free networks we generalize the degree-
organizational view of real-world networks with broad degree distributions [73, 61,
59, 67, 85]. We present a landscape analogue where the altitude of a site is pro-
portional to the degree of a node (Fig. 1.5a) and measure the widths of, and the
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(a) (b)

Figure 1.6: Two definitions of GO distance: (a) A direct distance as the shortest path be-
tween two nodes, A and B. (b) A hierarchical distance as the fraction of nodes downstream
of the closest “ancestor” of two nodes, A and B.

distances between, mountain peeks in a network. It is found that the Internet and
the street network of Manhattan display a smooth, one mountain, landscape while
the protein network of yeast has a rough landscape with several separated moun-
tains. It is speculated that these structures reflects the type of node property (e.g.
degree, functional ability etc.) that is crucial to the organizational principle of the
network. With this in mind, we suggest a method for generating ridged landscapes
where a random rank is assigned to every node, symbolizing the constraints imposed
by the space the network is embedded in. The constraint can be associated to spatial
or in molecular networks to functional localization. The network is then randomized
keeping each individual degree (see section 1.3.5) but where nodes of similar ranks
are connected. When introducing a small error rate, the algorithm creates small-
world networks with ridged landscapes (Fig. 1.5b) similar to those seen in many
biological networks. Also, the rank gradient is still preserved which was supposedly
the original organizational goal.

1.5.3 Paper III

In the paper One hub-one process: A tool based view on regulatory network topology
we extend the work done in paper II by studying the similarity of node properties
as a function of distance in the regulatory network of yeast. In other words, we
try to find a real version of the gradient displayed in Fig. 1.5b. Using the Gene
Ontology (GO) Consortium annotations [54] we show that locality in the regulatory
network is associated to locality in biological processes, and only weakly related to
the functional ability of a protein.

The GO database is in the form of an acyclic directed graph (similar to a tree
with connected branches) which organize proteins according to a predefined cate-
gorization. Lower ranking proteins in a GO-graph share large scale properties with
higher ranking proteins, but are more specialized. There are three different catego-
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rizations: (P) Which type of biological process a protein takes part in (cell division,
metabolism, stress response etc.). (F) What kind of molecular function a protein
performs (transcription factor, DNA binding etc.). (C) In what cellular component
a protein is acting (nucleus, membrane etc.).

The similarity in the node property of two nodes is measured as a GO-distance,
D, for the three categorizations respectively. We define two different distance mea-
sures capturing two separate definitions of closeness. The first measure is a direct
distance. That is, the shortest path length between the two nodes in the GO-graph
(Fig. 1.6a). The other measure is a hierarchical distance which gives a large dis-
tance between two nodes that are close to the root, but on different branches. The
hierarchical distance is defined as the fraction of nodes downstream of the lowest
common “ancestor” of the two nodes (Fig. 1.6b).

By using the method introduced in paper II we rewire the network with a bias
towards closeness in the GO-graph. The results indicate that nodes downstream of a
hub, in the real network, has been brought together with maximum bias on process
closeness.

Overall we suggest that the topology of the yeast network is governed by processes
located on hubs, each consisting of a number of tools in the form of proteins with
quite different functional abilities. Our findings also suggest that the rewiring of
links play a bigger role than gene duplication [84] during the network evolution.





Chapter 2

Statistical Mechanics and Networks

E
instein once said “God doesn’t play dice” when referring to the, at the time,
new ideas of quantum mechanics. However, he only objected to the lack of
determinism of the fundamental laws of quantum mechanics. Many aspects

of physics are well described by statistical mechanics and in this case the whole
concept is based on probabilities and dice throwing.

In fact, Einstein himself1 used statistical mechanics to solve the problem of
Brownian motion (first observed as a pollen particle in water, moving around in
an irregular fashion), confirming the existence of atoms and molecules [28]. It is
the collective motion of all the surrounding molecules that is responsible for this
irregular movement by pushing on the pollen particle in random directions. The
randomness is caused by the simple fact that the particle is sometimes hit from the
left and sometimes from the right, and chance plays a role just like when throwing a
dice. Statistical mechanics gives the tools to describe and predict many properties
of large ensembles under the influence of such random events. In this chapter the
concept of entropy and maximization of the entropy will be described, both in gen-
eral and for networks. A broader and more thorough, but easy going, introduction
to statistical mechanics and thermodynamics can be found in the first chapters of
the book Molecular Driving Forces: Statistical thermodynamics in Chemistry and
Biology by Dill, Bromberg and Stigter [26].

2.1 The concept of entropy

Entropy is one of the key concepts in thermodynamics and statistical mechanics. In
thermodynamics, entropy is defined as a macroscopic quantity measuring the level
of order of a systems. A highly ordered system has a low entropy while a very
disordered system has a high entropy. The second law of thermodynamics then
states that the entropy of a system can spontaneously only increase. That is, an

1and Marian Smoluchowski independently
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Figure 2.1: Particles in a box. The small dashed cuboid represents one possible location
for the orange (light gray) particle. The total number of possible locations is thus the
number of cuboids that can be fitted inside the box.

isolated system will tend to increase its disorder. To make this more intuitively
clear, imagine a system of gas molecules confined in a box. We then implement
a constraint on the system by manually forcing all the gas molecules to be closely
packed together in one of the corners of the box. We have now forced the system
into an ordered state with lower entropy2. However, when relaxing the constraint we
expect the gas to spread out in the box, due to the thermal motion of the molecules,
leading to a spontaneous increase in the disorder. We would be very surprised if the
opposite happened.

In statistical mechanics, however, entropy is defined as a microscopic quantity
measuring the multiplicity of a system. Here multiplicity means the number of
microscopic states (microstates) that a system could be in, given a certain macro-
scopic state (macrostate). A macrostate is an observed state of the whole system,
and in the gas case having all the molecules spread out over the whole box can be
considered as one macrostate and having them confined in a smaller volume (e.g.
in one of the corners) another. But, in both cases each molecule could be located
in many different places, and every configuration of the molecules location (inside
the confined volume) is a microstate. One can think of this as a big Rubik’s cube
where every little cuboid is a possible location for a molecule (see Fig. 2.1). It then
follows that the entropy will be larger if the molecules are spread out over a larger
volume (larger number of “cuboids”), which is consistent with the thermodynamical
definition based on increased disorder.

2Usually the state of a gas particle includes both its position and velocity. In this example the
velocity is excluded for the sake of simplicity.
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These two definitions are connected by the Boltzmann expression

S = kB ln Ω, (2.1)

where S is the entropy, Ω is the number of microstates and kB is the Boltzmann
constant (in thermodynamics kB = 1.380662 · 10−23 JK−1). The entropy is exten-
sive which means that the total entropy of two systems equals the sum of the two
entropies. That is,

SA+B = kB ln(ΩAΩB) = kB ln ΩA + kB ln ΩB = SA + SB. (2.2)

2.1.1 The maximum entropy principle

In statistical mechanics a macrostate is described by a frequency distribution of
outcomes, n(i), giving the number of constituents with outcome i. In the case of
the gas example this distribution describes how often a certain location (cuboid)
is occupied by a molecule, when taking a time average. To give another example
one can think of a coin. A coin can give two different outcomes: head (H) or tail
(T). Making a sequence of coin flips (a microstate) will then generate a distribution
function (a macrostate) for the number of heads and tails. The entropy of the system
is thus a measure of the number of microstates that are enclosed in this distribution
function. For example, a certain sequence of coin flips can look like

HHTHTH (2.3)

giving the macrostate n(H) = 4, n(T ) = 2. But the sequences

HTHHTH, THHHTH, THHTHH, etc.

are also giving the same macrostate of four heads and two tails. The number of pos-
sible microstates, giving the same macrostate, can be calculated as follows: For
the first element in the sequence we have N constituents (e.g. number of coin
flips) to choose from, giving N combinations. For the second element we have
one less constituent available to choose from giving us N − 1 possible combina-
tions. Continuing this reasoning down to the last element gives us the expression
N(N − 1)(N − 2)...1 = N !. This is the total number of configurations that can be
constructed out of N distinguishable outcomes. However, in most cases constituents
with the same outcome are not distinguishable. For example, exchanging two coins,
both with the outcome H , do not give a new microstate. We cannot tell them
apart. So, there are, for each configuration, n(i)! permutations for outcome i giving
the same microstate. Taking this degeneracy into account gives the final expression

Ω =
N !

∏s
i n(i)!

, (2.4)
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where s is the number of possible outcomes (e.g. two for a coin and six for an
ordinary dice). Note that describing a sequence of heads and tails as flipping one
coin N times, is equivalent to describing it as N coins being flipped only once3.

Using Sterling’s approximation (x! ≈ (x/e)x) simplifies Eq. 2.4 into

Ω ≈
(N/e)N

∏s
i (n(i)/e)n(i)

=
NN

∏s
i n(i)n(i)

. (2.5)

Finally, taking the logarithm of both sides and defining the normalized frequency
distribution p(i) = n(i)/N ,4 gives the formula for the entropy per constituents

S̃ =
1

N
ln Ω = −

s
∑

i

p(i) ln p(i), (2.6)

where S̃ = S/kBN . The macrostate, p(i), that maximizes Eq. 2.6, and thus the
entropy, is the uniform distribution p(i) = 1/s. This seems intuitively reasonable
since it means that if we flip a coin many times we should get, on average, equally
many heads and tails. Or, leaving the gas alone would give a situation where each
location in the box has the same chance of being occupied by a molecule. Note,
however, that this is only true if the coin is unbiased and if there is nothing from
the outside influencing the positions of the molecules in the box. Phrased in the
language of statistical mechanics it means that there must be an equal probability for
the system to be in any microstate in order to spontaneously reach the macrostate
with the maximum entropy. So, from all the possible macrostates that can be
created from flipping a coin many times, or from leaving a gas alone in a box for
a long time, there is one which largely dominates all the others in the number of
microstates. When picking a microstate randomly, and uniformly (which is what
one does when making a series of coin flips), it will basically always belong to the
dominating macrostate. The principle of maximum entropy thus states that the
macrostate with the highest entropy is the most likely one to be observed. It is like
drawing lottery were the contestants have different number of lottery tickets, and
the person with the most tickets have the highest chance of winning.

2.1.2 The Boltzmann distribution law

The maximum entropy solution presented in the previous section (given by a uniform
distribution function), is obtained by assuming that there are no constraints on the

3Assuming that all coins are statistically equivalent.
4It is important to note that even though p(i) can be regarded as a probability function, it

do not refer to the real underlying probability of an outcome, but to the probability that can be
inferred from an observation.
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system. However, many systems are operating under various constraints. It could
be gravity pulling the gas molecules in the above example, or indeed a false dice. In
this case the maximum entropy solution is the macrostate with the largest number
of microstates, but which is at the same time satisfying the constraints. A problem
of maximization (or minimization) under various constraints can be solved by using
variational calculus. Let us assume the constraint is some property of the system,
E, which should be kept constant. This constraint can be written as

s
∑

i

E(i)n(i) = E ⇒

s
∑

i

E(i)p(i) = 〈E〉, (2.7)

where 〈E〉 = E/N . We also have to make sure that the function p(i) is normalized,
giving the second constraint

s
∑

i

n(i) = N ⇒

s
∑

i

p(i) = 1. (2.8)

The next step is to maximize the entropy, S̃ (Eq. 2.6), given these constraints, and
thus maximize the auxiliary function

Φ[p(i)] = −

s
∑

i

(

p(i) ln p(i) + α
(

p(i)− 1
)

+ β
(

E(i)p(i)− 〈E〉
)

)

, (2.9)

where α and β are Lagrange multipliers. The maximum is found by fixing the
derivative with respect to p(i) to be zero for all i, which gives

∂

∂p(i)
Φ[p(i)] = 0 ⇒

ln p(i) = −1− α− βE(i). (2.10)

Solving Eq. 2.10 then gives the maximum entropy solution

p(i) = exp(−1− α− βE(i))

= A exp(−βE(i)). (2.11)

The actual values of the Lagrange multipliers α and β can be found by simul-
taneously solving Eq. 2.7 and 2.8 after substituting Eq. 2.11. An example of the
result for a dice with an average outcome of 3 (instead of 3.5 for an unbiased dice) is
shown in Fig. 2.2. Also, the physical meaning of these multipliers can be interpreted
by examining the rule [49]

α =
∂S̃∗(N, E)

∂N
(2.12)

β =
∂S̃∗(N, E)

∂E
, (2.13)
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Figure 2.2: The maximum entropy solution for the outcome of a six-sided dice with
E(i) = i under the constraint 〈i〉 = 3.

where S̃∗ is the maximum entropy. The meaning of α and β is thus the rate of
increase of the maximum entropy with the number of constituents and with the
quantity E, respectively.

Dividing both sides of Eq. 2.11 by Eq. 2.8 leaves the expression unchanged and
we get

p(i) =
p(i)

∑s
i p(i)

=
exp(−1− α) exp(−βE(i))

∑s
i exp(−1− α) exp(−βE(i))

=
exp(−βE(i))

∑s
i exp(−βE(i))

. (2.14)

Equation 2.14 is called the Boltzmann distribution law and the quantity in the
denominator is a normalization factor called the partition function. In statistical
physics and thermodynamics the quantity E(i) is usually an energy controlling the
system. For a gas in a box under influence of gravity it involves the potential energy
of the molecules. The Boltzmann distribution law says that the probability for a
constituent (e.g. a molecule or a coin flip) to have a certain outcome with energy
E(i) is proportional to the quantity exp(−E(i)). The higher the energy, the lower
the probability (for a given β).

2.1.3 The Boltzmann factor and the Metropolis algorithm

In thermodynamics, E is the internal energy of the system and it can be shown that
the Lagrange multiplier in the previous section must be β = 1/kBT (in accordance
with Eq. 2.13), where T is the temperature in units of Kelvin. This means that
the probability to observe an outcome of a certain energy increases with increasing
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temperature. Or, in other words, the Boltzmann distribution function flattens out
when the temperature is increased so that it becomes more likely to get an outcome
of higher energy. It is an interplay between energy minimization and entropy maxi-
mization. All the fundamental forces in nature struggle to relax everything into its
lowest energy level (the ground state). But at the same time their worst enemy, the
second law of thermodynamics, is working against them. The spontaneous increase
in entropy is pushing the system, by the means of thermal noise, towards higher
energies. An oxygen molecule is pulled down towards the earth’s surface by gravity,
but the oxygen molecule is also moving in random directions, and is constantly col-
liding with other molecules, which keeps it from falling all the way to the ground.
The source for the power of the entropy is the temperature, and the higher the tem-
perature, the stronger it pushes. The quantity exp(−E(i)/kBT ) is usually referred
to as the Boltzmann factor. Even though this quantity is not strictly a probability
(since it is not normalized) it gives the relative probability for a certain outcome.
In fact, using the Boltzmann factor one can get the ratio of probabilities for two
outcomes as

p(i)

p(j)
=

exp(−E(i)/kBT )

exp(−E(j)/kBT )
= exp(−∆Eij/kBT ), (2.15)

where ∆Eij = E(i)−E(j). That is, if ∆Eij = kBT , then the probability to observe
an outcome of energy E(j) is around 2.7 times higher than to observe an outcome
of energy E(i).

This simple expression (Eq. 2.15) turns out to be a very powerful tool when
simulating stochastic processes. In 1953, Nicholas Metropolis et al. suggested a
Markov chain Monte Carlo algorithm for generating random samples from a prob-
ability distribution that is difficult to sample from directly [63][40]. This algorithm
has been frequently used in numerical statistical physics together with Eq. 2.15. The
algorithm works in the following way:

Start with a system of N elements (e.g. molecules, coins, spins etc.). Define an
energy function, E, which depends on the outcome of all the constituents. Make a
random swap of the outcome of one of the constituents5 (e.g. a head is exchanged
for a tail) and calculate the energy of the new microstate. This change should then
be accepted with a probability equal to Eq. 2.15. By drawing a random number
from a uniform distribution between zero and one, U(0, 1), a decision can be made
to accept a swap if

U(0, 1) < exp(−∆E/T̃ ), (2.16)

where T̃ = kBT and ∆E = Enew − Eold. If the above condition is not fulfilled then
the old microstate is recovered. When repeated over and over again, this scheme
pulls the system towards lower energies since every swap giving a microstate with
lower energy is accepted (∆E is negative). But, at the same time, the entropy
increase is pushing in the other direction since some random swaps, giving higher

5satisfying the condition that every microstate has the same probability to occur



28 Statistical Mechanics and Networks

energies, are also accepted. The balance is again determined by the temperature T̃ .
At infinite temperature, all swaps are accepted and the entropy dominates, while at
zero temperature no swaps giving higher energies are carried out. The latter case
results in a system at its ground state6. Fixing the temperature and letting the
system reach its equilibrium then enable us to measure the system variables as a
function of the temperature.

The beauty of this method is that it can be used for any system, even systems
where there is no real temperature or energy present. We can simply define a
temperature and an energy function relevant to the system and the problem in hand.
Of course, the actual value of the energy and the temperature we are measuring at
has no real physical meaning, but we can reach a ground state in an unbiased
random fashion and we can study both the actual ground state and the approach to
this ground state.

2.2 Master equation and detailed balance

In a real, physical, system the different microstates are realized by a process where
the constituents move, or jump, from one outcome to another. Particles in a box are,
for example, moving around, changing their direction and speed due to collisions. It
could also be coins that are constantly being flipped. Making an observation of the
outcomes at a certain time catches the system in a certain microstate.

A master equation gives a general description of the time evolution of the prob-
ability, p(i, t), for a constituent (e.g. particle, coin) to have outcome i at time t,
given the nature of the process. The process it self is represented by transition rates
describing the chance for a constituent to jump to another outcome. The master
equation for a discrete set of outcomes can be written as

∂p(i, t)

∂t
=

∑

j

[

Tijp(j, t)− Tjip(i, t)
]

, (2.17)

where Tij is the transition rate for jumping from outcome j to outcome i (Fig. 2.3).
In other words, the change of the probability to have outcome i equals the sum of
the out- and in flows to- and from other outcomes. When the sum in Eq. 2.17 equals
zero the system is in steady state. A more strict equilibrium situation is when the
terms in the sum equals zero separately. This is called detailed balance and is defined
as

Tjip(i) = Tijp(j), (2.18)

for all i and j.
If all the transition rates are the same, then detailed balance is obtained when

p(i) = constant for all i and we obtain the unconstrained maximum entropy solution.

6Usually a simulated annealing routine, where the temperature is decreased slowly, has to be
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Figure 2.3: Two outcomes i and j with the transition rates Tij and Tji of jumping from
one to the other.

2.3 Entropy of networks

In section 2.1 the entropy was presented as a measure of the number of possible
microstates of a system, like gas molecules or even coins. This concept can also
be applied to networks, but it is a little bit more complicated than a sequence
of heads and tails when defining an outcome, and thus a microstate. We follow
the ideas of E.T. Jaynes (1957) [46] by making the connection between states and
different distinguishable ways of distributing objects, like links between nodes. But
what is distinguishable and what is indistinguishable for a network? What are
the simplest combinatorial entities to which we can assign equal probability? The
implicit assumption is then that if the resulting macrostate matches that of a real
system, then these entities effectively gives a good representation of the true behavior
of the system. These questions will be addressed in this section by mapping a
network onto a set of balls and boxes.

2.3.1 Definition of a microstate

A network can be mapped onto a set of balls and boxes where each node corresponds
to a box and each link end corresponds to a ball (Fig. 2.4). If the link ends are
numbered in a way that preserves the information of which boxes are interconnected,
then this mapping is exact. In Fig. 2.4 this is done by using a system where ball 1
is connected to ball 2, 3 is connected to 4, and so on.

Nodes are traditionally the important entities in network science. They are
in some sense real, unique individuals and thus distinguishable (people, webpages,
airports etc.) while the links are just means to represent their connections. The
approach presented here takes on a view point where a node is defined by its links.
That is, who you are is defined by what you do, or whom you associate with. Chang-
ing a link changes who you are. For example, a protein is defined by its sequence of
amino acids. But this sequence will also determine what kind of interactions it will
have with other molecules in the cell. So, in some sense a protein is defined by its

implemented in order to avoid getting stuck in local minimas.



30 Statistical Mechanics and Networks

Figure 2.4: Mapping of a network onto a set of balls and boxes. Each box on the right
corresponds to a node to the left. And, each ball to the right corresponds to a link end to
the left. For example, the top left box with one ball maps to the bottom left node with one
link.

interactions, its links.

The balls-and-boxes model is effective and relatively simple to handle and can
be used for many different types of problems [14, 21, 15]. However, it is fairly
difficult in this case to deal with network constraints. These constraints can include
disallowing nodes to link to itself, disallowing multiple links between nodes, and
keeping a network connected. It would then be necessary to always keep track
of which balls are in which box and if they are connected in an “illegal” manner.
These constraints will however be neglected here and dealt with in the next section.
Furthermore, the fraction of loops and double links in a network has been shown to
vanish in the infinite size limit [27].

Equal outcomes were treated as indistinguishable in the previous sections. In
this case, however, we can define different types of microstates where different parts
of an outcome are indistinguishable. The system now consists of N boxes being
the system components making up the microstates, and M balls representing their
outcome. The outcome of a box is which balls, and the number of balls (size),
k, it has, where the balls and their internal order can be either distinguishable or
indistinguishable in different ways. And, a macrostate is the distribution of sizes,
N(k). So, distributing the M balls over the N boxes then generates a microstate
with a corresponding macrostate. The question is: Which size distribution has the
most number of microstates? Below, three different definitions of a microstate, and
the resulting maximum entropy solutions, are presented.



Statistical Mechanics and Networks 31

Distinguishable balls without internal order

We will start with the case of distinguishable balls without internal order which
means that we know which balls are in which boxes, but we do not know (or care
about) their order. So, all the permutation’s of the balls between boxes gives new
microstates but reshuffling the balls inside a box makes no difference (in the same
way as exchanging two heads in previous example of coins made no difference). The
total number of configurations that can be created using M balls is M !. But, as
before, exchanging the position of two boxes of the same outcome (size) gives the
same microstate so we must divide the number of configurations by the term N(k)!
for each size. We also have a k! degeneracy of microstates for each box due to the
lack of an internal order. The total number of microstates is then given by the
formula

Ω =
M !

∏

k N(k)!k!N(k)
(2.19)

⇒ ln Ω ≈ M ln M −M −
∑

N(k)[ln N(k)− 1]−
∑

N(k) ln k! (2.20)

Since the number of boxes and balls are fixed we have the two constraints
∑

k

N(k) = N and
∑

k

kN(k) = M. (2.21)

We can again maximize the entropy ln Ω under these constraints by using vari-
ational calculus and introducing the two Lagrange multipliers a and b, respectively.
The solution is given by

− ln N(k) + 1− 1− a− bk = 0

⇒ N(k) = A
exp(−bk)

k!
, (2.22)

where A = exp(−a) is the normalization constant. The expression given by Eq.
2.22 can also be written as

N(k) = A
Bk

k!
, (2.23)

where B = exp(−b) is a constant. This solution can be recognized as the Poisson
distribution which is also, as we saw in chapter 1, the degree distribution for the ER
network with B = M/N = 〈k〉.

The meaning of the enumeration in this case can be thought of as the time
ordering of when the ball entered the system. This is equivalent to linking up nodes
one by one and then asking how many different networks one can make, given a
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certain distribution of degrees, N(k). So, we start with a given set of boxes and
then put ball 1 in an arbitrary box, and then ball 2, ball 3, and so on. In this way
there is only one way in which the same balls can be distributed inside one box,
and that is with the lowest number first and the highest last. This means that the
Poisson distribution gives the most number of possible different networks.

Distinguishable balls with internal order

Next we move to the case of distinguishable balls with internal order. In this case
we know exactly which balls are in which box and the order in which they arrived to
the box. For example, in Fig. 2.4, the balls in the largest box has the order: first 5,
then 7, next 4 and last 2. This means that every permutation of the balls, in a box
as well as between boxes, give different microstates. That is, we have no degeneracy
except the N(k)! for each size, and the total number of microstates is

Ω =
M !

∏

k N(k)!
(2.24)

(2.25)

The maximum entropy solution is found in the same way as before and is given by

N(k) = A exp(−bk), (2.26)

where A = exp(−a). Thus, this definition of a microstate gives the Boltzmann
distribution as the maximum entropy solution.

The meaning of the enumeration of the balls in this case is quite different from
the previous one. Here, the number of a ball signifies to which box it connects to
and the fact that each link on a node connects to another node means that they are
distinguishable. So, in this case we ask how many different networks we can make,
including all the different time orders in which it can happen. A more local question
is how many different other nodes a node, with a certain degree, can connect to
and in how many time orders those connections can be made. This is equivalent to
enumerating the balls by which box it connects to and then distribute them over the
boxes in all possible ways (which includes the possibility to connecting to oneself
or another node several times). This means that the distinguishability of the balls
can be confined to within a box, and that enumerating them from 1 to M is an
analogous way of simplifying the problem, giving the same result. We still have M !
ways of distributing the balls.

There is actually one more way of getting the same result. The balls in this case
are completely indistinguishable, inside as well as between boxes. The only thing we
can distinguish between are the boxes and their sizes. So, now we have N ! ways of
distributing box sizes among the N distinguishable boxes. For example, box number
1 got k balls, box 2 got k′ balls, and so on. However, it does not matter if box 1 got
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k′ balls and box 2 got k balls instead if k = k′, so we again have a N(k)! degeneracy
per box size. The number of states is then

Ω =
N !

∏

k N(k)!
(2.27)

with the maximum entropy solution P (k) = A exp(−bk).

Distinguishable balls with cyclic internal order

The third case is again treating the balls as distinguishable, but with a cyclic internal
order. That is, each cyclic permutation of the balls in a box gives the same microstate
leading to a k degeneracy of microstates for each box. The expression for the number
of microstates is for this case given by

Ω =
M !

∏

k N(k)!kN(k)
(2.28)

with the maximum entropy solution

N(k) = A
exp(−bk)

k
. (2.29)

Here the enumeration has the same meaning as in the previous case but including
a different kind of time ordering. Here we ask the question of how many different
networks we can make, including the different ways it can be done in the sense of
a relative order between the links. A cyclic degeneracy is a more abstract concept
in this context, but it roughly means that a ball only cares about if a certain other
ball entered the box right before it, and not the absolute time it got there. So for
example, all the cases where ball A is the first one or where ball B is right before
A, are the same.

General case

One can of course think of many more variations by simply defining a degeneracy
function, f(k), so that

Ω =
M !

∏

k N(k)!f(k)N(k)
(2.30)

and

N(k) = A
exp(−bk)

f(k)
. (2.31)
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The three cases described above, however, have a combinatorial meaning.

It should be mentioned that other types of entropy measures have been developed
like for example applying Eq. 2.6 to the betweeness distribution (number of paths
through a certain node, described in section 1.3.3) [83].

2.3.2 Variational calculus using a random process

As mentioned before, it is difficult to handle network constraints in analytic calcu-
lations. This is mainly due to the difficulties one faces when trying to formulate
expressions governing the structure of the network. That is, who is connected to
whom, and who do a nodes neighbors connect to, etc. One way of dodging this
problem is to construct a random process which is sampling the microstate in an
unbiased way, while dealing with the constraints by simple rejection and accepta-
tion. The unbiased way of doing this would be to jump between microstates with
uniform probability. That is, move the balls around in such a way that every mi-
crostates has the same probability to occur. However, we are only concerned about
the macrostate of the system and what we can observe is the box sizes. Thus, since
many microstates correspond to the same macrostate, an efficient way of solving
the problem is to map the jumping between microstates to directly making changes
in the box sizes. Moving a ball from one box to another changes their size and
thence the macrostate of the system. So, to be fair, this move should be weighted
proportional to the amount of microstates, Q, that could be reached by making this
exchange. The implementation of the weights could be done in the same way as
for the metropolis algorithm where a uniform random number is drawn and checked
against the normalized weights. A more efficient way would be to instead pick the
boxes with the correct probability directly, if possible. This would remove the need
to reject many moves, which saves computational time. A way to do this could be
to create an array of box labels where the number of times each label appears is
proportional to the weight of that box. Boxes are then chosen by picking elements of
the array with uniform probability. Once the weights are found and the algorithm
for picking boxes is constructed, any constraint can be implemented by a simple
check and rejection scheme.

The algorithm for finding the maximum-entropy solution through a random pro-
cess goes like this: Start with M balls distributed over N boxes in an arbitrary way.
Pick two boxes, A and B, with a probability proportional to their weights, qA and
qB, and move a ball from box A to box B. Performing these swaps many times leads
to a steady state with the correct maximum-entropy solution. The actual weights,
and how to find them, for the previously described definitions of a microstate are
presented below.
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Figure 2.5: Distinguishable balls without internal order: (a) Process for unbiased sam-
pling of states. (b) The result of repeating the algorithm of choosing a box with a probability
p ∝ qA and moving one ball to another box chosen with a probability p ∝ qB, for M/N = 4.

Distinguishable balls without internal order

The number of microstates that can be reached by moving a ball from one box
to another is illustrated in Fig. 2.5a. Since the balls are distinguishable there are
qA = kA possibilities when picking a ball from box A. But, we only have qB = 1
place to move the ball to, because the internal order does not matter and all we
know is that the ball has been moved to box B. Thus, when constructing the
algorithm for sampling the microstates, we can pick boxes uniformly and reject or
accept them according to the total weight Q = qAqB = kA, much like the metropolis
algorithm. A more computationally efficient way is to pick the first box proportional
to qA = kA (i.e. its size) and the second box proportional to qB = 1, without the
need of rejection, as described above.

If repeated enough times, the algorithm will equilibrate at the maximum entropy
solution for the given definition of microstate. as shown in Fig. 2.5b. In network
science this algorithm is usually thought of as the most basic randomization scheme
creating an Erdős-Rényi network (see chapter 1) from any starting network. The
arguments presented here explains why this is so.

Distinguishable balls with internal order

As illustrated in Fig. 2.6a, we here have qA = kA balls to choose from in box A
since the balls are distinguishable. When placing the same ball in box B there are
qB = kA + 1 possible locations to choose from, due to the presence of an internal
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Figure 2.6: Process for unbiased sampling of states for (a) distinguishable balls with
internal order and (b) indistinguishable balls. (c) The result of repeating the algorithm of
choosing a box with a probability p ∝ qA and moving one ball to another box chosen with
a probability p ∝ qB, for M/N = 4.

order. So, the total weight for moving a ball from one box to another is in this case
Q = qAqB = kA(kB + 1). The more efficient implementation is to simply pick box A
proportional to its size and box B proportional to its size plus one.

For the other case, giving the same solution, we instead have only one choice
per box since it does not matter which ball we pick in the box. Also, there is only
one place to put in the second box since there can not exist an internal order for
indistinguishable balls (Fig. 2.6b). Thus, the algorithm in this case is to choose two
boxes with uniform probability and move one ball from one to the other.

Both algorithms gives the result presented in Fig. 2.6c.

Distinguishable balls with cyclic internal order

For the case of a cyclic internal order we have, as shown in Fig. 2.7, qA = kA balls
to choose from in box A since the balls again are distinguishable. And, we have
qB = kB locations to place the ball in box B because the bottom and top position
gives the same microstate due to the cyclic degeneracy. The total weight is then
Q = qAqB = kAkB, or the boxes should be picked with a probability proportional
to their sizes. This case amounts to the same algorithm as for the preferential urn
model presented in Ref. [71], though on a different motivative ground.
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General case

In general, any system undergoing a stochastic process in equilibrium has in fact
maximized the entropy for some definition of a microstate. In this case the mi-
crostates are defined by the process itself. Sometimes this definition can be very
hard to describe combinatorially. For example, an ordinary dice has the outcomes
1 to 6, and if it is rolled in an unbiased way they all have the same chance of ap-
pearing. But, if the player decides to re-role every time 6 comes up, the process has
changed and is no longer unbiased with respect to the outcomes 1 to 6. It is now
unbiased with respect to 1 to 5 instead.

2.4 Summary of papers

2.4.1 Paper IV

In paper IV, Scale-freeness for networks as a degenerate groundstate: A Hamilto-
nian formulation, we give a statistical mechanical formulation of networks, addressed
through the analogous non-network model of balls and boxes. An equivalent descrip-
tion would be that a node corresponds to a town and its degree to the number of
inhabitants. We start from a basic rewiring scheme where a random person meets
another random person and moves to his/her town with a certain probability. By
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writing down the master equation for this process, and finding the solution to the
detailed balance conditions, we derive a Hamiltonian for the system. The energy,
the entropy (given by Eq. 2.6), as well as the degree distribution and its fluctua-
tions are investigated at various temperatures. Figure 2.8 shows the energy and the
entropy as a function of temperature, ranging from zero (from the positive tempera-
ture side) to the positive infinite temperature and from minus infinity to zero (from
the negative side). The groundstate, at zero(+) temperature, of the Hamiltonian
is the scale-free power-law distribution, P (k) = Ak−γ0 which turns out to have a
small energy but a reasonably large entropy. That is, the groundstate is highly
degenerate with many possible microstates. At infinite temperature the solution is
P (k) = A exp(−bk)/k and for temperatures in the range 0+ < T < +∞ the solution
is P (k) = A exp(−bk)/kγ where 1 < γ < γ0.

The result for a negative infinite temperature is the same as for the positive,
but when increasing the temperature towards 0− the result is quite different. The
negative groundstate is when all boxes has the same number of balls (or at least
only two different sizes if the ratio between the number of balls and boxes is not
an integer). This solution has a very high energy and a low entropy. Also, for
an intermediate temperature −∞ < T < 0− a distribution emerges which is very
similar to the Poisson.

2.4.2 Paper V

In paper V, entitled Optimization and scale-freeness for complex networks, we gener-
alize the concept of entropy for networks. By mapping a network onto a set of boxes
(nodes) and distinguishable balls (link-ends) we consider different definitions of a
microstate and their corresponding maximum entropy solutions. We argue that the
maximum entropy solution P (k) = A exp(−bk)/k is a random degree distribution
with respect to a set of network states. Furthermore, the question of what kind of
bias is needed to impose on the system in order to change the distribution to a gen-
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eral power law is addressed, and a type of box information measure is suggested. It
is shown that the maximum entropy solution then becomes P (k) = A exp(−bk)/kc

and that the power-law distribution, with b = 0, c = c0, maximizes also the box
information.

So far we have only been dealing with the average distribution P (k). However,
since the maximum entropy principle depends on an underlying stochastic process,
the distribution must fluctuate. These fluctuations are studied by calculating the
distribution of system state probabilities, pi (the probability to find the system in
state i with the distribution ni(k) close to P (k)), a Hamiltonian, H , can be derived
so that pi ∝ exp(−H/T ). This Hamiltonian turns out to be the same as the one
derived in paper IV. Again, the pure power-law distribution is the groundstate which
corresponds to small fluctuations (the distribution pi is dominated by a single state
i).

Finally, the consequences for directed networks are addressed by randomly giving
undirected links a direction. By using the measures introduced in paper I it is
shown that the maximum entropy arguments of a random network are consistent
with model A and metabolic networks.

2.4.3 Paper VI

In paper VI, The blind watchmaker network: Scale-freeness and evolution the dis-
cussion of possible maximum entropy solutions for networks is taken one step fur-
ther. We show that there exist another, process driven, definition of a microstate
giving the distribution P (k) = A exp(−bk)/k2 as the maximum entropy solution.
Moreover, when the system constraints are implemented the resulting distribution
overlaps very well with those of metabolic networks (see Fig. 2.9). This means that,
in contrary to the suggestions from paper IV and V, this power-law distribution can
arise without any bias, and thus is obtained at infinite “temperature”with maximum
fluctuations. These results implies that natural selection has exerted no or very little
pressure on the network degree distribution and that its broad behavior is simply a
side effect of the stochastic element in Darwinian evolution.

Here we consider the previously described case of distinguishable balls with a
cyclic degeneracy but with the additional constraint that the only way to pick a box
is to pick a ball. That random mutations target the links makes sense for metabolic
networks since the enzymes that catalyze the reactions are encoded in the DNA. A
mutation could then change the enzyme to catalyze a different reaction and thus
effectively move around the links in the system. As a consequence an extra weight
of k is assigned to each box giving the weights qA = k2

A and qB = k2
B for picking the

boxes A and B.

When mapping back to a network one more step must be added to the algorithm.
Before moving a link-end from node A to node B a check has to be made so that
no constraints (e.g. multiple links and loops) are violated. If the move is rejected
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shot of the BW networks and the metabolic network of E. Coli.

another link-end on the same node is chosen and tested against the constraints. If
no links on node A is allowed to be moved two new nodes are selected according to
the corresponding weights. The resulting steady-state network is entitled the blind
watchmaker network.

An additional constraint needs to be implemented when comparing to metabolic
networks. This constraint restricts the number of one-degree nodes to about 5− 8%
of the nodes in the network. This means that there are very few substances that are
involved in only one reaction and that this reaction has only one substrate or only
one product, which could be a chemical constraint.

2.4.4 Paper VII

In Paper VII, Selective pressure on the metabolic network structure as measured
from the random blind watchmaker network, we investigate the network structure
phase space of the Blind watchmaker (BW) network, represented by a clustering-
assortativity space [44] (see Fig. 2.10). We compare the behavior of the BW null
model to the same real data as used in paper VI, metabolic networks, and show
that their network structure, quantified by these two measures, fits inside the BW
phase space. However, the real data display a non-randomness in their structure
by deviating from the random expectation value of the null model. This finding
implies a selective pressure on metabolic networks towards lower assortativity and
higher clustering coefficient. It is also shown that when selecting BW networks
with low assortativity (of the same magnitude as for the metabolic networks) the
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degree distribution is affected only slightly. However, this small change seem to
increase the similarity between the distributions. When randomizing the metabolic
networks, keeping their degree distributions fixed, their structural properties are
quite unaffected. This suggests that much of these structures are encoded in the
degree distribution itself. When using the BW random process as null model the
degree distribution is allowed to fluctuate, so when selecting for a particular value
of the assortativity it will take the easiest route towards this goal. And this involves
changing the degree distribution. The BW and the metabolic networks seem to
behave in a similar way compared to their respective randomized counterparts with
a fixed degree sequence.

A feature of the metabolic network ensemble is that they have quite different
sizes (number of nodes and links), which is not taken into account in Fig. 2.10.
When studying the size dependency on the C-r measurements it is found that the
two systems behave alike when fixing N and varying 〈k〉. On the other hand, when
fixing 〈k〉 and varying N they behave differently. That is, when increasing N the
assortativity for metabolic networks stays roughly constant while it increases for the
BW networks. This result suggests that the selection towards lower assortativity is
stronger for larger networks.





Chapter 3

Linguaphysics

T
he development of language is one of the major transitions in evolution [81]
where we acquired the ability to communicate and transfer information be-
tween individuals and even between generations. To reach the level of intel-

ligence needed for self-awareness, to understand action and consequences, and later
obtaining the gift of speech made it possible for us to warn others of danger, com-
municate about our needs and discuss plans for the future. With the development
of the written language information could be spread to more individuals and saved
for future generations. This is also a big advantage in the evolutionary sense. Using
the analogy by Bergstrom et al, one can imagine evolution as the process of sending
information from a parent to a child. The child wakes up in an unknown world with
only a letter from her parents explaining how to survive. This is her DNA. With-
out exploring the world the child now has to write new letters to her forthcoming
offspring. She can either simply copy the old letter or make some small changes
(mutations), hoping, without knowing, that these changes will make her child more
fit for this world. This is a slow process full of mistakes leading to children dying
from misleading letters. On the other hand, the children that got better letters have
evolved and with a higher chance of survival, get the opportunity to write many
more letters. With the invention of language, however, the parents can complement
the letter with accurate information about how to survive, after having explored the
world themselves. This capability ensures a higher rate of survival in the offspring
and could make humans acquire skills that are very difficult to encode in the DNA,
such as growing crops or developing medicines. It might thus be “easy” to under-
stand, in the context of evolution, why we developed the skill of language, but it is
much harder to explain the reasons for, or even the properties of, its structure.

This chapter is about the large scale structures in texts, about existing models,
and about how it all relates to the underlying random entities in written language.
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3.1 Physics - A jack of all trades

Physicists are infamous for the habit of bashlessly taking on problems outside the
“physics borders”. Social and cognitive sciences has certainly not been spared and
the quantitative linguist Gabriel Altmann writes in despair [5]

Today there are many physicists counting letters,
hoping to find physical laws behind them. And
once in a decade they discover that letters behave
like mesons and create a wonderful theory. It is
not valid, but it is wonderful.

However, the cooperation between the two disciplines has in many cases been
fruitful and he admits that

...the engagement of physicists in linguistics was
almost always associated with progress. It is not
so much the mathematical apparatus they bring
in, but rather the way of thinking which, due to
their education, is quite “natural” to them but
fully foreign to linguists who have a very modest
mathematical and “non-linguistic” knowledge.

There are, of course, also dangers associated with applying lines of thinking and
established theories from one field, to problems in other fields since the basic entities
might just be different. Altmann finishes with the observation

In any case, linguists know that “to have a body”
does not mean “to be physicist” but physicists
mostly do not know that “to speak a language”
does not mean “to be linguist”.

The work presented in this thesis on word frequencies, however, is not dealing
with traditional questions in linguistics like the structure of language in the sense of
grammar nor does it concern semantics. We are not studying morphology, syntax
or phonology. We are interested in text as data. We look for universal properties of
the data and ways to mathematically describe its behavior.

Our strategy, which might indeed be deemed as a typical physicists approach,
is to make collections of books for single authors and in addition to use periodic
boundary conditions in order to optimize the statistics.
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3.2 Definition of letters, words and texts

In this context a text is a series of words, where each word is a sequence of letters
separated by any other symbol, e.g. blanks, punctuation marks etc. A letter is
an alphabetic symbol, a-z (a-ö in Swedish), with no distinction between lower and
upper case letters. The apostrophe is also included to accommodate the grammatical
rules for showing possession and marking omission of letters. As a result of these
definitions the word “it’s” is counted as one word (different from both “it” and “is”)
and “its” as another.

The number of different (unique) words in a text will be denoted as N and the
total number of words (the length of the text) as M . Consequently, the average usage
of a word is M/N . The number of words with occurrence, or frequency, k is denoted
N(k) and the normalized frequency distribution is given by P (k) = N(k)/N . That
is, the fraction of words with frequency k.

3.3 Empirical laws

An empirical law is a mathematical expression describing a property observed in
data obtained through experiments or observations. It is thus not derived from
some basic principles which explains the observed behavior. Two such laws are
Heaps’- and Zipf’s law where the latter has had a big impact also outside the field
of quantitative linguistics [79][88][52].

3.3.1 Heaps’ law

In the nineteen seventies Harold Stanley Heaps proposed an empirical law describing
the relation between the number of unique words, N , and the total number of words
M in a text [41]. That is, for every word that is written, M is increased by one. But,
N is only increased when a new word is written, that has never been used before in
the text. The law states that

N(M) = κMα, (3.1)

where κ and α are positive constants. κ usually lies in the range 10 to 100 for
a typical book and α < 1 since N cannot grow faster than M by definition. For
real texts, however, N(M = 1) = 1. That is, the first word is always unique. This
means that the proportionality constant κ in Heaps’ law should be equal to one, and
N(M) = Mα. It is often the case that even the first couple of words are different
giving close to a linear relation between N and M for small M . For example, in
the sentence “Once upon a time there was a boy” the first repetition occurs at the
seventh word giving N(6) = N(7) = 6 and N(8) = 7. However, as we continue
to write we tend to repeat previous words more and the rate of adding new words
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decreases. This constitutes a problem when trying to fit the functional form of
Heaps’ law to real data: We cannot both have a linear relation for small M , and
a decreasing rate of adding new words as M gets larger. This is illustrated in Fig.
3.1 which shows a fit of Heaps’ law to the N(M)-curve of the book Moby Dick by
Herman Melville, both for a free κ and κ = 1 in linear (a) and logarithmic scale (b).

3.3.2 Zipf’s law

When studying the occurrences of words in the written language, George Kingsley
Zipf (1935), made an empirical observation that the most common word appears
about twice as many times as the second most common word, and about three
times more often than the third most common word [89][90][91]. When sorting, or
ranking, all the words in a text according to their frequency, a rank distribution,
known as Zipf’s law, can be written as

k(r) ∝ 1/r, (3.2)

where k(r) is the frequency of the word with rank r (the most frequent word
has r = 1). It also means that the number of words with frequency k equals the
number of discrete rank values giving a frequency in the range [k, k + 1). Thus,
by calculating the absolute value of the slope of the inverted rank distribution as
|∆r/∆k| ≈ |dr/dk|, we can obtain the frequency distribution

P (k) ∝ 1/k2. (3.3)
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Figure 3.2 is illustrating Zipf’s law by showing the rank- (a) and the frequency
distribution (b) for the novel Moby Dick, together with the corresponding theoretical
curves for comparison.

Zipf’s law is sometimes written in a more general form as k(r) ∝ r−β, where β is
usually close to one. Several modifications and extensions to Zipf’s law have been
presented over the years, both for the actual functional form [57] and its content
[65][39]. It has for example been suggested that real data display two scaling regimes
with different exponents β [34].

3.4 Models

Such a seemingly universal and interesting empirical law as that of Zipf of course
inspires the development of many models with the aim to explain the observed
behavior [38][74], although very little attention has been devoted to the empirical
observation described by Heaps’ law. The two most famous models which reproduce
Zipf’s law are probably the stochastic model by Simon and the optimization model
by Mandelbrot. These two models will be presented in this section together with an
alternative version of Mandelbrots model, called random typing.

3.4.1 The Simon model

In the article On a Class of Skew Distribution Functions from 1955 [80], Herbert A
Simon proposed a stochastic model which generates frequency distributions similar



48 Linguaphysics

to those observed in many real systems, e.g. word frequencies, city sizes and income.
The model for writing a text is built on two assumptions:

1 The probability to repeat a word that has already appeared exactly k times
in the text is proportional to kN(k).

2 There is a constant probability, ε, to write a new word that has not been
written before.

These assumptions lead to an algorithm where, at every time step, a new word
is written with probability ε or an old word is repeated with probability 1 − ε.
Moreover, the repeated word is chosen uniformly from the words already existing in
the text. If this algorithm is run for T time steps the number of total words will be
M = T . It then follows that the number of different words will be N(M) = εM since
every 1

ε
th words is new, and the average frequency is given by 〈k〉 = M/N = 1/ε.

It is also fairly easy to write down a rate equation for the repetition of a word
with a certain frequency k. When calculating the chance of repeating this word the
number of favorable choices to make is k, and the possible number of choices is the
same as the total number of words, T . The rate at which the frequency of a word is
increasing is thus given by

∂k

∂T
=

(1− ε)k

T
, (3.4)

where the term (1− ε) is the probability to actually repeat an old word instead
of writing a new one. The solution to Eq. 3.4 is

k(T ) = Ce(1−ε) ln T , (3.5)

where C is the constant of integration. The time t at which the word was first
introduced in the text gives the boundary condition k(t) = 1 leading to the final
expression

k(T, t) = e(1−ε) lnT/t =

(

T

t

)1−ε

. (3.6)

k(T, t) is thus the average frequency of a word introduced at time t in a text
of length T . We can from this obtain the frequency distribution in a non-rigorous,
heuristic way, similar to the derivation for Zipf’s law. By inverting Eq. 3.6 we get

t(k) = k−ρ T, (3.7)

where ρ = 1
1−ε

. Since we are only dealing with discrete values, the number
of words with frequency k equals the number of introduction times resulting in a
frequency in the range [k, k + 1). This number is given by the absolute value of the
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slope of Eq. 3.7 as |∆t/∆k|, where ∆k = 1. Approximating the slope as a derivative
gives the expression for the frequency distribution

P (k) ∝ k−(ρ+1). (3.8)

According to Eq. 3.8 the power-law exponent ranges between the extreme points
γ = 2 (ε = 0, only repetition) and infinity (ε = 1, only unique words).

ε is equal to 0.5 for the BA-model described in chapter 1 since every time a link
is added to a new node the degree of an old node is also increased, resulting in the
exponent γ = 1 + 1

1−0.5
= 3.

3.4.2 Optimization

A popular approach to explain Zipf’s law has been the notion that this feature is the
result of an optimization [6][8]. Benoit Mandelbrot suggested in 1953 that natural
languages has minimized the ratio of cost to information content, leading to the
behavior observed by Zipf [57]. His view was that the information content, H(r), of
a word with rank r is related to its normalized frequency, f(r) (= k(r)/M) through
H(r) = − log2 f(r). This expression states that rare words (low f) contains more
information than common words, although the precise form is not clearly motivated.
The average information content per word is consequently

H = −
∑

r

f(r) log2 f(r), (3.9)

which can be recognized as the Shannon entropy of the distribution f(r) [77].

Furthermore, the cost of using a particular word is C(r) resulting in an average
cost per word given by

C = −
∑

r

f(r)C(r). (3.10)

The task is then to find the rank distribution, f(r), which minimizes the ratio
C/H under the constraint

∑

r f(r) = 1. Variational calculus (see section 2.1.2) gives
the solution

f(r) ∝ 2−HC(r)/C . (3.11)

Mandelbrot further argued that the cost function should be proportional to the
length (number of letters) of a word, L. If one assumes that the same is true also
for the rank (short words has low rank since low cost gives high frequency) and that
the number of unique words of a certain length grows exponentially with L, then
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r(L) =
L−1
∑

L′=1

KL′

≈ KL−1 ∝ KL

⇒ L(r) ∝ log2 r, (3.12)

where K is the number of letters in the alphabet. The expression for the cost
function then becomes C(r) ∝ L(r) = C0 log2 r.1 This specific form of the cost func-
tion also happens to be the only one giving a power-law rank-distribution. Inserting
the cost function in Eq. 3.11 gives

f(r) ∝ r−B, (3.13)

where B = HC0/C. When evaluating the values of H and C by inserting Eq.
3.13 back into Eq. 3.10 and 3.9 it turns out that the exponent B must be infinite
to get a self-consistent solution. This was of course bad news, but to get around
the problem Mandelbrot suggested an extended form of the cost function, namely
C(r) = C0 log2(r + r0). The rank distribution then becomes

f(r) ∝ (r + r0)
−B, (3.14)

which is commonly referred to as the Zipf-Mandelbrot law. Evaluating C and H
this time gives the Zipfian exponent B = 1 when r0 →∞.

The optimization model by Mandelbrot might be phenomenologically appealing
but it suffer from several weak points. First of all, even though real data display a
plateau like behavior for small r (as described by the parameter r0), the function
given by Eq. 3.14 is hard to fit to any real data since r0 needs to be very large
in order to get the correct exponent. Despite this fact, the Zipf-Mandelbrot law is
often used as a parametrization to independently fit B and r0 to real data.

It has also been shown empirically that the number of different words of the same
length do not grow exponentially in natural languages (which was the requirement
for getting a power law). In fact, it is a non-monotonic function with a maximum
at around 7 or 8 letters2 [58].

3.4.3 Random typing

Mandelbrot also made the connection between his model and a model of randomly
typing letters, since a maximization of the entropy implies a highly disordered,

1Manin [58] instead tried to explain this form as the amount of information needed to retrieve
a word of rank r from a memory. That is, he suggests that log2 r is the number of bits needed to
specify the address of the rth object in an array. This is however incorrect since the address of all
objects will have the same length log2 R, where R is the number of objects.

2Checked for English and Russian.
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random, system. Also, if words are written by randomly (and uniformly) picking
among K + 1 letters (where the extra letter constitutes a blank) then the number
of possible different words of length L is N(L) = KL, precisely as required by
Mandelbrot’s cost function. As shown by Wentian Li in 1992, random texts produced
in this manner display a rank distribution similar to that of Zipf’s law [51]. When
typing random letters, the chance to repeat a word of length L is proportional to
K−L. This means that the frequency of words of length L also follows the same
expression

f(L) ∝ K−L. (3.15)

As a consequence, short words are more likely to be repeat than long words, and
will thus have smaller ranks. The same arguments that led to Eq. 3.12 also holds in
this case and consequently L(r) ∝ log2 r. Substituting L(r) into Eq. 3.15 gives the
rank distribution

f(r) ∝ 1/r. (3.16)

The scheme presented here creates a step like rank distribution since all words
of the same length will have the same frequency. However, Li showed that the curve
can be made smoother by implementing different probabilities for different letters.
The weak point of the model is again the fact that real words do not follow an
exponential relationship between the number of words and the length.

3.5 Summary of papers

3.5.1 Paper VIII

In the paper Size dependent word frequencies and translational invariance of books
we show that the word frequency distribution (wfd) can to a good approximation
be described by the functional form P (k) = A exp(−bk)/kγ , and that the power-law
slope seem to change with the size of the text, in contrary to Zipf’s law and the
predictions made by previously presented models. Moreover, it is found that the
size dependence on the wfd for different books is very similar to the outcome of
sectioning down a long text (pulling out a section of size M from a text of size M ′).
This sectioning can be mathematically described by a Random Book Transformation
based on binomial coefficients generalized for any partitioning (dividing a book into
n pieces) and is given by

PM(k) = C
∞

∑

k′=k

PM ′(k′)(n− 1)k′−k 1

nk′

(

k′

k

)

(3.17)
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Figure 3.3: Statistical properties of the novel Howards End by E.M. Forster: (a) Size
dependency of the wfd shown for different section sizes (M ′/n) of the novel. (b) The
N(M)-curve for three different starting positions in the novel.

where n = M ′/M and C is the normalization constant. The word ’Random’ stands
for the fact that this transformation only gives the correct result if the words in a
book are uniformly distributed.

We also compare statistical properties of real books to the Simon model and a
random null model. It is shown that real texts and the null model, where the words
have been reshuffled preserving the individual frequencies, show a similar behavior,
which is not picked up by the Simon model. One such property is the N(M)-curve
which for real books deviate very little from the null model. It is also shown that,
statistically speaking, there is no such thing as a beginning nor an end of a book.
Real books are translational invariant. By this we mean that there are no visible
trends for N(M)-curves constructed from different starting positions in a book.
This is not the case for a text written by the Simon model. The stochasticity of the
model will always create books that have more unique words in the end, than in the
beginning. In an attempt to quantify how uniformly the words are distributed in a
real book, we measure how many words of a certain frequency have been encountered
when half of the book has been read. It is found that a big majority of the words in
the novel Howards End by E.M. Forster are within two standard deviations of what
is expected for the null model. On the other hand, real books tell a story and there
will always be context related deviations. That is, some rare words which are very
important for a small part of the book can give a strong signal of non-randomness.

Furthermore, we present a procedure, based on the RBT, for fitting a function
to stochastically generated data.
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Figure 3.4: Evidence in favor of the meta book concept from books by Tomas Hardy: (a)
The average usage of words for different books (triangles) and for sections pulled out of
the full collection of books (dashed line), as a function of the size, M . (b) The wfd for a
short story (squares) and for a section of the same size as MV (triangles) pulled out of
the full collection of books (circles).

3.5.2 Paper IX

In the second paper about word frequencies, entitled The meta book and size depen-
dent properties of written language, we present the meta book concept as a way to
describe the size dependency on some of the statistical properties observed in books.
The idea is that the writing of a text can be described by a process where the author
pulls a piece of text out of a large mother book (the meta book) and puts it down on
paper. This meta book is an imaginary infinite book which gives a representation of
the word frequency characteristics of everything that an author could ever think of
writing. This has nothing to do with semantics and the actual meaning of what is
written, but rather to the extent of the vocabulary, the level and type of education
and the personal preferences of an author.

One evidences in favor of the meta book concept is the average usage of a word,
〈k〉, as a function of the length of the text. As seen from Fig. 3.4a this quantity for
a real book (points) is very similar to what we get when pulling small sections out
of a much larger book (line).

Another evidence is the word frequency distribution (wfd). As first pointed out
in paper VII, and here shown in Fig. 3.4b, the wfd for a short story is also very
similar to the result of pulling a small section out of a large book.

An analytic relationship between the wfd and an extended version of Heaps’ law
(N(M) = Mα(M)) is derived giving the resulting size dependent wfd
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PM(k) = A
e−b0k/M

k1+α(M)
. (3.18)

A, in Eq. 3.18, is the normalization constant and b0 is an author-specific con-
stant. The extended Heaps’ law is given by N(M) = Mα(M), with a monoton-
ically decreasing α. The real data can be well described by the parametrization
α(M) = 1/(u lnM + v) which has the asymptotic value α(M → ∞) = 0. The
resulting wfd for the infinite meta book is thus

P∞(k) =
A

k
, (3.19)

in contrary to A/k2 given by Zipf’s law. In practice, though, b0/M and α(M)
will never be exactly zero.

It is also shown that the behavior of the N(M)-curve (Heaps’ law) can be re-
produced by the Random Book Transformation which is in fact a mathematical
formulation of the meta book concept. It is thus shown that the size dependence in
the power-law slope is linked to the behavior of the N(M)-curve, which in its turn
can be described by the meta book concept.

An interesting note is that the relation between the exponents γ = 1+α has also
been shown to hold for the frequency distribution of family names. It was shown
that the growth in the number of family names in Korea corresponds to α = 0 and
that the frequency distribution follows the expression P (k) ∼ 1/k [50][7].



Chapter 4

Summary and Discussion

This thesis has been about organizational principles of complex systems based on
an underlying randomness. Due to the complicated and chaotic nature of the mi-
croscopic events that has shaped biological networks we needed to zoom out and
simplify. We investigated, following the lines of statistical mechanics, the simple
stochastic rules that can be assigned to a system and the different kinds of results
that emerge as a consequence of those rules. The processes that come with these
rules have also been used to compare the null models to real data in order to learn
about the possible constraints these systems could be working under.

We found that the degree seems to be the important characteristics in the or-
ganizational principles of who should be connected to whom for engineered commu-
nication networks. Examples of such networks are the Internet and street networks
where signals often needs to be sent from one end of the network to the other. On
the other hand, biological systems like protein-protein networks, or transcriptional
networks, display a structure which, in the latter case suggest a shift in focus to-
wards what type of biological process the node (protein) are involved in. It also
seems reasonable to speculate that a similar type of gradient as the one displayed in
Fig. 1.5b also exists in many other types of systems. It could for example represent
political views in a social network.

We also mapped a network onto a set of balls and boxes which opens up a whole
new regime of combinatorial possibilities. Different definitions of a microstate gave
different results as measured by the degree distribution. It was shown that one of
these definitions together with a set of process based rules gave a result very similar
to that of metabolic networks. This would imply that the constraint of natural
selection has had very little influence on the degree distribution of these networks.

The question of whether or not links in a specific network are in fact distinguish-
able is a difficult nut to crack. However, It seems reasonable that links on a certain
node are distinguishable since they connect to different nodes. Another meaning of
the labels on the balls could be possible weights on the links. These weights could
represent the strength of binding or the rate of a reaction. It also makes sense that
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random mutations target the links in metabolic networks since a mutated enzyme
might catalyze another reaction and thus changes the links between the substances
in the network. Even though it is very hard to map the actual way links are rewired
to a definition of a microstates, a good agreement between a maximum entropy so-
lution and real data can, in general, give a hint to the actual underlying rules of
the system. For example, Max Planck was forced to introduce discontinuous energy
levels with a separation proportional to a constant (Planck’s constant) in order for
the entropy of a black body to match experimental data. Later, it was shown that
this assumption in fact represented the correct behavior of the system.

Also the meaning of a time order on the links is difficult concept to wrap once
head around. One analogy could be the assembly of a bookshelf from IKEA. Even
though the function of the final product is independent of how it was constructed,
some moves must be made before others (side walls must be mounted before the
shelf’s can) to even make it possible to reach its final state. So, the time order of
the assembly do matter and we can distinguish them by the fact that some lead to
a dead end in the construction.

In the third chapter we moved to a system which is not very different from that
of networks but one which lacks the complexity of the connections, namely texts
and books. Also here we set up to determine to what extent words are randomly
distributed over a text and how this can be used to extract information about the
system. Books tell stories and of course a text is not completely random. It is
shown that some context related words gives very strong signals of non-randomness.
However, filling words (e.g.“the”,“of”,“and”etc.), which are the most frequent words
in a text, are to a large extent homogeneously distributed over the text. Actually,
only the 7 most frequent words in Moby Dick (out of around 17 000) constitute more
than 20% of the whole book, making these words a dominate factor in the statistics
(95 words can be accounted for about half of the book). Also rare words gives
good signals of randomness when grouped together in frequency classes. During this
work we found a very interesting size dependency in the word-frequency distribution
of real books. This led us to formulate the meta book concept which describes the
process of writing as pulling sections out of a big abstract mother book, a meta book.
The data also discriminates authors, which implies that the meta book represents
our personal way of writing, and not only a statistical result of the structure of
the language itself. Nevertheless, the theoretical infinite limit for all authors is the
same and this work shifts the problem from trying to recreate Zipf’s law to trying
to explain the structure of the meta book. Also, the fact that there is a difference
between authors means that each meta book is unique and can be seen as a linguistic
fingerprint.

The meta book concept is probably also quite general and seems to be applicable
to, for example, family name distributions.
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