Modeling Dynamics of Information Networks

Martin Rosvall* & Kim Sneppen

NORDITA

*Department of Theoretical Physics, Umeå University

”Networks may be viewed as the natural embedding of a world with a limited information horizon”
Why complex networks?

- Who is connected to whom?
 - Indistinguishable nodes — inessential question.
 - Unique nodes — fundamental question.
Perfect centralized network

- Everybody close to each other
- Links are expensive

Imperfect information
Limited information horizon

Agent i has a memory that gives rise to a rough picture of the network

$$M_i = \begin{cases} \ D_i(l), & l = 1, 2, \ldots, i - 1, i + 1, \ldots n, \\ P_i(l) \end{cases}$$

The distance $D_i(l)$ is agent i’s estimated shortest path length to agent l.

The pointer $P_i(l)$ is agent i’s nearest neighbor on the estimated shortest path to agent l.
Rewiring

- An agent i and one of its neighbors j are chosen at random.
- An agent $l \neq i, j$ is randomly chosen and if $D_i(l) > D_j(l)$ the link between i and j is rewired to a link between i and k.
- Update of information if rewiring was successful.
Degree distribution

\[P(C') \sim C^{-2} \]
Overall correctness of information can be modeled by *information exchange* and *average degree*.

Self-organization: Create links with probability $P_c = 1 - C_2/C_1$, remove links with probability $1 - P_c$.
Information I_{about} is defined as the fraction of other agents that have correct information about their distance and direction to an agent.

Information I_{of} is defined as the fraction of correct information an agent has about distances and directions to all other agents.
Test for correlations between vertices with different degrees by comparing with a randomized version of the network. — Hierarchy!